Cho DABC vuông tại A, AH là đường cao. Gọi D, E lần lượt là hình chiếu vuông góc của H trên AB, AC.
a) Chứng minh: ∆ABH ∆CAH.
b) Chứng minh: AD.AB = AE.AC = AH2
c) Chứng minh đường trung tuyến CM của tam giác ABC đi qua trung điểm của HE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta ABC\left(\perp A\right)\) và \(\Delta HBA\left(\perp H\right)\) có \(\widehat{B}\) chung
b,\(\Delta ABC\sim\Delta HBA\) theo a
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Leftrightarrow AB^2=HB.BC\)
\(=4.\left(4+9\right)\)
\(\Rightarrow AB=2\sqrt{13}\) (cm)
Áp dụng định lí py-ta-go trong \(\Delta ABH\):
\(AH=\sqrt{AB^2-BH^2}=6\left(cm\right)\)
Vì \(AH=DE=6cm\)
c, Xét \(\Delta HBA\left(\perp H\right)\) và \(\Delta DHA\left(\perp D\right)\) có \(\widehat{A}\) chung
\(\Rightarrow\Delta HBA\sim\Delta DHA\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AH}{AB}\Rightarrow AD.AB=AH^2\) \(\left(1\right)\)
Tương tự \(\Delta EHA\sim\Delta HCA\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AE.AC=AH^2\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AD.AB=AE.AC\)
-Chúc bạn học tốt-
a: Xét ΔABH và ΔCAH có
góc ABH=góc CAH
góc AHB=góc CHA
=>ΔABH đồng dạng với ΔCAH
b: ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔACH vuông tại H có HE là đường cao
nên AE*AC=AH^2=AD*AB
Hình vẽ:
a, \(\Delta AHD\) vuông tại \(H\), \(HD\perp AB\Rightarrow AD.AB=AH^2\)
\(\Delta AHC\) vuông tại \(H\), \(HE\perp AC\Rightarrow AE.AC=AH^2\)
\(\Rightarrow AD.AB=AE.AC\)
b, Ta cần chứng minh \(NE\perp DE;MD\perp DE\)
Ta có \(\Delta AHE\sim\Delta ACH\left(g-g\right)\)
\(\Rightarrow\widehat{AHE}=\widehat{ACH}\)
Vì ADHE là hình chữ nhật nên \(\widehat{ADE}=\widehat{AHE}\)
\(\Rightarrow\widehat{ADE}=\widehat{ACH}\)
Lại có \(\widehat{MDB}=\widehat{MBD}\Rightarrow\widehat{ADE}+\widehat{MDB}=90^o\)
\(\Rightarrow\widehat{MDE}=90^o\Rightarrow MD\perp DE\)
Tương tự \(NE\perp DE\)
\(\Rightarrowđpcm\)
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
Suy ra: AH=DE
a, Vì \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\) nên ADHE là hcn
Do đó AH=DE
Hình vẽ:
a, \(\Delta AHD\) vuông tại \(H\), \(HD\perp AB\Rightarrow AD.AB=AH^2\)
\(\Delta AHC\) vuông tại \(H\), \(HE\perp AC\Rightarrow AE.AC=AH^2\)
\(\Rightarrow AD.AB=AE.AC\)
b, Ta cần chứng minh \(NE\perp DE;MD\perp DE\)
Ta có \(\Delta AHE\sim\Delta ACH\left(g-g\right)\)
\(\Rightarrow\widehat{AHE}=\widehat{ACH}\)
Vì ADHE là hình chữ nhật nên \(\widehat{ADE}=\widehat{AHE}\)
\(\Rightarrow\widehat{ADE}=\widehat{ACH}\)
Lại có \(\widehat{MDB}=\widehat{MBD}\Rightarrow\widehat{ADE}+\widehat{MDB}=90^o\)
\(\Rightarrow\widehat{MDE}=90^o\Rightarrow MD\perp DE\)
Tương tự \(NE\perp DE\)
\(\Rightarrowđpcm\)
c, Q là giao điểm của DE và AH (Ghi đúng đề)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Vì \(MNED\) là hình thang nên
\(PQ=\dfrac{1}{2}\left(MD+NE\right)=\dfrac{1}{4}\left(BH+CH\right)=\dfrac{1}{4}BC=2,5\left(cm\right)\)
P/s: Đăng 1 lần thôi.
a: Xét ΔABH vuông tại H và ΔCAH vuông tại H có
góc HAB=góc HCA
=>ΔABH đồng dạng với ΔCAH
b: ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔAHC vuông tại H có HE là đường cao
nên AE*AC=AH^2
=>AD*AB=AE*AC=AH^2