K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2016

CMR : a)n(n^2+12)+(2_ngày)(n^2_3n+1)(n^2_3n+1)+8 chia hết cho 5 với mọi n thuộc Z

b)n^5_n chia hết cho 30

29 tháng 11 2019

Ta có: 30=5.6, mà (5;6)=1 nên ta chứng minh n5-n chia hết cho 5 và 6

+) n5-n=n(n4-1)=n(n2-1)(n2+1)=n(n-1)(n+1)(n2-4+5)=n(n-1)(n+1)(n2-4)+5n(n-1)(n+1)

                                                                                  =(n-2)(n-1)n(n+1)(n+2)+5n(n-1)(n+1)

   Vì (n-2)(n-1)n(n+1)(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5

        5n(n-1)(n+1) chia hết cho 5

    => n5-n chia hết cho 5              (1)

+) n5-n=n(n4-1)=n(n2-1)(n2+1)=n(n-1)(n+1)(n2+1)

                                                =(n-1)n(n+1)(n2+1)

Vì (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 6

=> (n-1)n(n+1)(n2+1) chai hết cho 6

=> n5-n chia hết cho 6                       (2)

  Từ (1) và (2) => n5-n chia hết cho 30

               Vậy n5-n chia hết cho 30   (đpcm)       

17 tháng 11 2022

b: 9^2n có chữ số tận cùng là 1

=>9^2n+14 có chữ số tận cùng là 5

=>9^2n+14 chia hết cho 5

c: n(n^2+1)(n^2+4)

=n(n-2)(n-1)(n+1)(n+2)+10n^3

Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp

nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5

=>n(n^2+1)(n^2+4) chia hết cho 5

 

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

5 tháng 11 2018

\(9^{2n}+14\)

92n = 81n có chữ số tận cùng là 1

14 có chữ số tận cùng là 4

=> \(9^{2n}+14\) có chữ số tận cùng là 5 

=> \(9^{2n}+14\) chia hết cho 5 (đpcm)