K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2015

2 S = 22016 - ( 22015 + 2 2014 + 22013 +.....+ 2+ 2 2 + 2 )

2S - S = 2 2016 + 1

13 tháng 5 2015

S = 22015- 22014- 22013-.......-22-21-20

2S = 22016 - 22015 -22014 - 22013 -..........- 23 -22 -21 

2S -S = 22016 -22015 -22014 -22013 -....- 23-2-21  - 22015 + 22014 + 22013 +.....+ 23 +22+21+2

= 22016 - 2x22015 + 20

20=1

26 tháng 8 2021

\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)

\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)

\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)

\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)

16 tháng 7 2018

ta có: \(S=1-2+2^2-2^3+2^4-2^5+...+2^{2013}-2^{2014}\)

\(\Rightarrow2S=2-2^2+2^3-2^4+2^5-2^6+...+2^{2014}-2^{2015}\)

=> 2S + S = -22015 + 1

=> 3S = -22015 + 1

=> 3S - 1 = -22015

=> 1 - 3S = 22015

( cn về S = 1 - 2 + 22 - 23 + 24-25+...+22013 - 22014 mk vx chưa hiểu quy luật của nó lắm, thật lòng xl bn nha! mk chỉ bk z thoy!)

20 tháng 12 2022

\(2^{x+1}\cdot2^{2014}=2^{2015}\\ 2^{x+1}=2^{2015}:2^{2014}\\ 2^{x+1}=2\\ =>x+1=1\\ x=1-1\\ x=0\)

20 tháng 12 2022

Ủa sao kì z ;-; 

4 tháng 1 2024

\(B=2^{2018}-2^{2017}-2^{2016}-2^{2015}-2^{2014}\)

\(=>2B=2^{2019}-2^{2018}-2^{2017}-2^{2016}-2^{2015}\)

\(=>2B+B=2^{2019}-2^{2014}\)

\(=>B=\dfrac{2^{2019}-2^{2014}}{3}\)

`#3107`

\(A=1+2^1+2^2+2^3+...+2^{2015}\)

\(2A=2+2^2+2^3+2^4+...+2^{2016}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)

\(A=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)

\(A=2^{2016}-1\)

Vậy, \(A=2^{2016}-1.\)

28 tháng 9 2023

\(A=2^0+2^1+2^2+...+2^{2015}\)

\(2\cdot A=2^1+2^2+2^3+...+2^{2016}\)

\(A=2A-A=2^{2016}-2^0\)

\(A=2^{2016}-1\)

 

Bài 1:

Ta có: \(3n+1⋮n-1\)

\(\Leftrightarrow3n-3+4⋮n-1\)

\(3n-3⋮n-1\)

nên \(4⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(4\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)(tm)

Vậy: \(n\in\left\{2;0;3;-1;5;-3\right\}\)

4 tháng 10 2017

25 tháng 8 2023

\(A=1+2^1+2^2+...+2^{2015}\)

\(2\cdot A=2^1+2^2+2^3+...+2^{2015}+2^{2016}\)

\(2A-A=2^1+2^2+2^3+...+2^{2015}+2^{2016}-\left(1+2^1+2^2+...+2^{2015}\right)\)

\(A=2^{2016}-1\)