K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED
=>BA=BE

Xét ΔBAE có BA=BE và góc ABE=60 độ

nên ΔBAE đều

c; Xét ΔABC vuông tại A có cos B=AB/BC

=>5/BC=1/2

=>BC=10cm

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔBAE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔBAE đều

6 tháng 4 2022

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

\(\stackrel\frown{ABD}=\stackrel\frown{EBD}\)

\(BD\left(chung\right)\)

=> ΔABD=ΔEBD(c.h-gn)

:Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE

=> ΔBAE cân tại B

mà \(\widehat{ABE}=60^o\)

=> ΔBAE đều(t/c tam giác cân)

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

2: Ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔABE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔABE đều

3: Xét ΔABC vuông tại A có 

\(\cos B=\dfrac{AB}{BC}=\dfrac{5}{BC}\)

=>BC=10(cm)

1/ Chứng minh: ΔΔABD = ΔΔEBD

Xét  ΔΔABD và ΔΔEBD, có:

            ˆBAD=ˆBED=900BAD^=BED^=900

            BD là cạnh huyền chung

            ˆABD=ˆEBDABD^=EBD^ (gt)

Vậy ΔΔABD = ΔΔEBD  (cạnh huyền – góc nhọn)

2/ Chứng minh:ΔΔABE là tam giác đều.

ΔΔABD =ΔΔEBD (cmt)

=> AB = BE

mà  ˆB=600B^=600  (gt)

Vậy  ΔΔABE có  AB = BE và   nên  ΔΔABE đều.

3/  Tính độ dài cạnh BC

Ta có :  Trong ΔΔ ABC vuông tại A có ˆA+ˆB+ˆC=1800A^+B^+C^=1800 

               mà ˆA=900;ˆB=600(gt)A^=900;B^=600(gt)  => ˆC=300C^=300

 Ta có  :  ˆBAC+ˆEAC=900BAC^+EAC^=900 (ΔΔABC vuông tại A)

                Mà ˆBAE=600BAE^=600(ΔΔABE đều)  nên ˆEAC=300EAC^=300

Xét ΔΔEAC có ˆEAC=300EAC^=300 và ˆC=300C^=300 nên ΔΔEAC cân tại E

            => EA = EC mà EA = AB = EB = 5cm

Do đó EC = 5cm

Vậy BC = EB + EC = 5cm + 5cm = 10cm

1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

2: Ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔBAE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔABE đều

10 tháng 2 2015

Mình không biết có đúng hay không nha?! 

Theo mình thì: a) Tam giác ABD (góc A=90 độ) và tam giác BDE (góc E=90 độ) có: góc ABD = góc DBE (gt)  BD chung\(\Rightarrow\)tam giac ABD= tam giác BDE(cạnh huyền-góc nhọn)

 

b) Ta có:AD=DE(tam giác ... = tam giác...) 

tam giác ADE cân Ta có: góc D =120 độ ( góc D= 180 độ -(góc A + góc B)=60 độ...) góc A=góc E=(180 độ - góc D)/2=30 độ Góc BEA = 90 độ -30 độ = 60 độ => tam giác BEA đều. Chỗ nào sai sót hay bạn thắc mắc thì ghi lại nhé!

 

 

 

 

9 tháng 2 2016

 

a) tam giác ABD vuông và tam giác EBD vuông có BD=BD,góc ABD=góc EBD

=> tam giác ABD=tam giác EBD (ch-gn)

b) ta có AB=EB (tam giác ABD=tam giác EBD)

=> tam giác ABE cân tại B

tam giác ABE cân tại B có góc EBA=60 độ

=> tam giác ABE đều

c) tam giác ABC có góc CAB=90 độ,góc CBA=60 độ

=> góc ACB=30 độ

=> tam giác ABC là nửa tam giác đều

=> AB =1/2 BC=> BC=2AB=2.5=10 cm

1 tháng 2 2017

ve hinh ra duoc khong ban

14 tháng 2 2016

a) Tam giác ABD (góc A=90 độ) và tam giác BDE (góc E=90 độ) có: 

góc ABD = góc DBE (gt)  

BD chung

tam giac ABD= tam giác BDE(cạnh huyền-góc nhọn)

 

b) Ta có:AD=DE(tam giác ... = tam giác...) 

tam giác ADE cân 

Ta có: góc D =120 độ ( góc D= 180 độ -(góc A + góc B)=60 độ...) 

góc A=góc E=(180 độ - góc D)/2=30 độ 

Góc BEA = 90 độ -30 độ = 60 độ => tam giác BEA đều.

c.xét tam giác ABC có : cosABC=AB/BC 
=> BC=AB/cosABC => BC=5/cos60=? ( tại mình ko có máy tính