K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2016

y=5

k mình rùi mìh trả lời đầy đủ cho

y*2+y/2=10

=>y=4

Vì:  y*2+y/2

=4*2+4/2

=8+2

=10

-> Đúng với đề bài

=> y=4

y*2+y/2=10

=>y=4

Vì:  y*2+y/2

=4*2+4/2

=8+2

=10

-> Đúng với đề bài

=> y=4

Ta có: y=4

Vì: 4*2+4/2

=8+2

=10

=> Đúng

Kết luận: y=4

2+y/2=10

=>y/2=10-2

=>y/2=8

=>y=8x2

=>y=16

2+y/2=10

=>y/2=10-2

=>y/2=8

=>y=8x2

=>y=16

23 tháng 9 2016

y x 2 + y/2 = 10

y x 2 + y x 1/2 = 10

y x ( 2 + 1/2 )  = 10

y x 5/2 =10

y = 10 : 5/2

y = 4

23 tháng 9 2016

y x 2 + y/2 = 10 

=> y x 5/2 = 10

=>y = 4

8 tháng 9 2016

4 x 2+ 4/2 = 10 nhé!

26 tháng 7 2015

có khùng hk vậy hùng tự đăng tự giải ls

 

30 tháng 6 2015

1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51 
Vậy 2 số tận cùng của 51^51 là 51 
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3 
Vậy trung bìng cộng là 2 
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6 
Do x là số nguyên tố => x=7 TM 
5)3y=2z=> 2z-3y=0 
4x-3y+2z=36=> 4x=36=> x=9 
=> y=2.9=18=> z=3.18/2=27 
=> x+y+z=9+18+27=54 
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5 
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7) 
Nhân ra kết quả cuối cùng là x=3 
8)ta có (3x-2)^5=-243=-3^5 
=> 3x-2=-3 => x=-1/3 
9)Câu này chưa rõ ý bạn muốn hỏi! 
10)2x-3=4 hoặc 2x-3=-4 
<=> x=7/2 hoặc x=-1/2 
11)x^4=0 hoặc x^2=9 
=> x=0 hoặc x=-3 hoặc x=3 

3 tháng 7 2018

\("="\Leftrightarrow x=1;y=3\)

Bạn thêm vào dòng cuối nhé :v Mình quên ghi :v

3 tháng 7 2018

\(\frac{-7x^2+42x-64}{x^2-6x+10}\)

\(\Rightarrow7+\frac{6}{\left(x-3\right)^2+1}=y^2+2y\)

\(\Rightarrow\frac{6}{\left(x-3\right)^2+1}=\left(y-1\right)^2+6\)

\(\Rightarrow6=\left[\left(y-1\right)^2+6\right]\left[\left(x-3\right)^2+1\right]\)

\(\Rightarrow0=\left(y-1\right)^2\left(x-3\right)^2+6\left(x-3\right)^2+\left(y-1\right)^2\)

28 tháng 9 2016

Ta có : \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}.10=5\)

Vậy MIN P = 5 khi x = y = \(\frac{\sqrt{10}}{2}\)

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)