Các tìm kiếm liên quan đến Cho sáu số tự nhiên liên tiếp n, n+1,n+2,n+3,n+4,n+5 trong đó n là một số tự nhiên nào đó . Chưng minh rằng hai trong sáu số đó không có hai số nào có ước chung bằng 6 hay lớn hơn 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 6 chữ số phân biệt là \(\overline {abcdef} \).
Chữ số 4 có giá trị bằng 4 000 nên số 4 ở vị trí c. Số cần tìm là \(\overline {ab4def} \)
Vì hai chữ số cạnh nhau luôn là hai số tự nhiên liên tiếp nên số b, 4 và d là 3 số tự nhiên liên tiếp. Do đó, \(\overline {b4d} \) có thể là 345 hoặc 543.
+ Nếu \(\overline {b4d} \) là 345 thì a=2, e=6, f=7. Ta được n = 234 567.
+ Nếu \(\overline {b4d} \) là 543 thì a=6, e=2, f=1. Ta được n = 654 321.
Vậy tìm được 2 số là 234 567 và 654 321.
:D chỉ biết câu 3
3. Tìm số tự nhiên n, sao cho: n + 5 chia hết cho n + 1
n+5 ⋮ n + 1 => n + 1 + 4 ⋮ n + 1
Mà n+4 ⋮ n+4 => 4 cũng ⋮ n+1
=> n+1 ∈ Ư(4) = { 1; -1; 2; -2; 4; -4 }
Lập bảng
n+1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 0 | -2 (loại*) | 1 | -3 (loại*) | 3 | -5 (loại*) |
Vậy n ϵ {0; 1; 3}
*loại vì đề bài yêu cầu STN