K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{EAC}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADE và ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔADE\(\sim\)ΔABC(c-g-c)

a: Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>H,M,K thẳng hàng

b: BHCK là hình thoi khi BH=HC

=>AB=AC

3 tháng 5 2016

a, Xét tam giác ADB và tam giác AEC có:

^A chung

^AEC = ^ADB 

\(\Rightarrow\) ADB đồng dạng AEC

b,Xét tam giác HEB và tam giác HDC có:

^EHB = ^DHC

^HEB = ^HDC

\(\Rightarrow\) tam giác HEB đồng dạng tam giác HDC

\(\Rightarrow\) HE.HC = HD.HB

2 tháng 5 2016

a) xét tam giác ADB và AEC có:

góc A chung

góc ADB= góc AEC (=90 độ)

=> ADB đồng dạng vs AEC (g.g)

b) xét tam giác EHB và tam giác DHC có:

EHB= DHC (2 góc đối đỉnh)

HEB- HDC (=90độ)

=> EHB =DHC (g.g)

=> HE/HB = HD/HC 

=> HE.HC=HD.HB

 

2 tháng 5 2016

a) xét tam giác ADB và AEC có:

góc A chung

góc ADB= góc AEC (=90 độ)

=> ADB đồng dạng vs AEC (g.g)

b) xét tam giác EHB và tam giác DHC có:

EHB= DHC (2 góc đối đỉnh)

HEB=HDC (=90độ)

=> EHB đồng dạng DHC (g.g)

=> HE/HB = HD/HC 

=> HE.HC=HD.HB