K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

a: Ta có: M và H đối xứng nhau qua BC

nên BC là đường trung trực của MH

Suy ra: BM=BH; CM=CH

Xét ΔBHC và ΔBMC có

BH=BM

HC=MC

BC chung

Do đó: ΔBHC=ΔBMC

a) Gọi O là giao điểm của HM và BC.

Ta có: M là điểm đối xứng của H qua BC (gt)
=> BC là đường trung trực của HM.

Ta có: BO là đường cao của tam giác BHM (BC vuông góc HM).
          BO là đường trung tuyến của tam giác BHM (HO=MO).
=> Tam giác BHM cân tại B (t/c).
=> BH = BM (t/c)
=> CM = CH (chứng minh tương tự)

Xét tam giác BHC và tam giác BMC, có:
* BC là cạnh chung (gt)
* BH = BM (cmt)
* CH = CM (cmt)
=> Tam giác BHC = Tam giác BMC (c.c.c) (đpcm).

b) Gọi F là giao điểm của đường cao BF với AC.
    Gọi G là giao điểm của đường cao CG với AB.

Xét tam giác ABF vuông tại F, có:
Góc BAC + Góc BFA + Góc ABF = 180 độ (tổng 3 góc của 1 tam giác)
80 độ + 90 độ + Góc ABF = 180 độ 
                        Góc ABF = 180 độ - 80 độ - 90 độ
                        Góc ABF = 10 độ

Xét  tam giác BGH vuông tại G, có:
Góc BGH + Góc BHG + Góc GBH = 180 độ (tổng 3 góc của 1 tam giác)
90 độ + 10 độ + Góc BHG = 180 độ 
                        Góc BHG = 180 độ - 90 độ - 10 độ
                        Góc BHG = 80 độ

Mà góc BHG = góc CHF (đối đỉnh)
Nên góc CHF = 80 độ

Ta có: góc BHC + góc CHF = 180 độ ( kề bù)
          góc BHC + 80 độ = 180 độ
                       góc BHC = 180 độ - 80 độ
                       góc BHC = 100 độ

Ta có: góc BHC = góc BMC (tam giác BHC = tam giác BMC)
Mà góc BHC = 100 độ (cmt)
Nên góc BMC = 100 độ (đpcm).

10 tháng 9 2016

tks bạn nha  <3 

a: Ta có: M và H đối xứng nhau qua BC

nên BC là đường trung trực của MH

Suy ra: BM=BH; CM=CH

Xét ΔBHC và ΔBMC có

BH=BM

HC=MC

BC chung

Do đó: ΔBHC=ΔBMC

a: Xét ΔBHC và ΔBMC có

BH=BM

HC=MC

BC chung

Do đó: ΔBHC=ΔBMC

a: Ta có: M và H đối xứng nhau qua BC

nên BC là đường trung trực của MH

Suy ra: BH=BM và CH=CM

Xét ΔBHC và ΔBMC có 

BH=BM

HC=MC

BC chung

Do đó: ΔBHC=ΔBMC

25 tháng 5 2019

a) Chứng minh được DBHC = DBMC (c.c.c).

b) Gọi {C'} = CH Ç AB. Sử dụng định lý tổng 4 góc trong tứ giác AB'HC' ta tính được B ' H C ' ^ = 120 0  

Ta có B ' H C ' ^ = B H C ^  (đối đỉnh) và  B C H ^ = B M C ^    ( d o   △ B H C = △ B M C )    ⇒   B M C ^ = 120 0

a) Vì M đối xứng với H qua BC nên BC là đường trung trực của MH

Suy ra: BH=BM và CH=CM

Xét ΔBHC và ΔBMC có 

BH=BM(cmt)

CH=CM(cmt)

BC chung

Do đó: ΔBHC=ΔBMC(c-c-c)

16 tháng 5 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi giao điểm BH với AC là D, giao điểm của CH và AB là E, H là trực tâm của ΔABC

⇒ BD ⊥ AC, CE ⊥ AB

Xét tứ giác ADHE, ta có:

∠ (DHE) = 360 0  – ( ∠ A +  ∠ D +  ∠ E ) = 360 0 - 60 0 + 90 0 + 90 0 = 120 0

∠ (BHC) =  ∠ (DHE)(đối đỉnh)

∆ BHC =  ∆ BMC (chứng minh trên)

⇒  ∠ (BMC) =  ∠ (BHC)

Suy ra:  ∠ (BMC) =  ∠ (DHE) =  120 0

26 tháng 10 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì M đối xứng với H qua trục BC

⇒ BC là đường trung trực của HM

⇒ BH = BM (t/chất đường trung trực)

CH = CM (t/chất đường trung trực)

Xét tam giác BHC và tam giác BMC có:

BC chung

BH= BM ( chứng minh trên)

CH = CM (chứng minh trên)

Suy ra:  ∆ BHC =  ∆ BMC (c.c.c)