K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

Do đó: ΔBAD=ΔBHD

Suy ra: AD=HD

b: ta có: AD=HD

mà HD<DC

nen AD<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có

BH=BA

góc HBK chung

Do đó:ΔBHK=ΔBAC
Suy ra BK=BC

hay ΔBKC cân tại B

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: DA=DH

DH<DC

=>DA<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B

26 tháng 3 2022

undefined

15 tháng 5 2022

https://hoidapvietjack.com/q/804157/cho-tam-giac-abc-vuong-tai-a-tia-phan-giac-cuaabc-cat-ac-tai-d-tu-d-ke-dh-vuong-

 

25 tháng 3 2017

\(a.\)Xét \(\Delta ABD\)vuông tại \(A\) và \(\Delta HBD\) vuông tại \(H\)
              có:   \(AD\): cạnh chung
                       \(\widehat{ABD}=\widehat{HBD}\)    ( vì \(AD\)là tia phân giác của \(\widehat{ABH}\))
      \(\Rightarrow\)\(\Delta ABD=\Delta HBD\) (cạnh huyền - góc nhọn)
      \(\Rightarrow\) \(AD=DH\) ( 2 cạnh tương ứng)

\(b.\) Xét \(\Delta DCH\)vuông tại \(H\)có:    \(DH< DC\)(vì trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
            mà \(AD=DH\)                \(\Rightarrow\)\(AD< DC\)(đpcm)

\(c.\)Xét \(\Delta KBH\)và \(\Delta CBA\)có:    \(\widehat{BHK}=\widehat{BAC}=90^0\)     ( gt )
                                                                       \(BH=AB\)                              ( vì \(\Delta ABD=\Delta HBD\))
                                                                        \(\widehat{KBH}\): góc chung                   ( gt )
                                \(\Rightarrow\)\(\Delta KBH=\Delta CBA\) (g.c.g)
                                \(\Rightarrow\)\(BK=BC\)(2 cạnh tương ứng)
                                \(\Rightarrow\)\(\Delta KBC\)cân  tại  \(B\)

24 tháng 4 2018

a) Xét tam giác ABD và tam giác BDH có: góc B1= góc B2 (do BĐ là pg ABD)

      BD cạnh chung

      góc ABD= góc BHD( =90 độ)

=> tam giác ABD= tam giác BDH( g.c.g)

=> AD=DH( 2 cạnh tương ứng)

b) mk ki bt làm

c) Xét tam giác BHK vuông tại H có: góc B+ góc HKB= 90 độ( t/c)

  Xét tam giác BAC có : góc B+ góc ACB= 90 độ( t/c)

=> góc HKB= góc ACB (cùng phụ vs góc B)

=> góc AKD = góc HCD

Xét tam giác ADK và tam giác HDC có: 

góc AKD = góc HCD(cmt)

AD=DH( c/m câu a)

góc KAD= góc DHC( = 90 độ)

=> tam giác ADK= tam giác HDC( g.c.g)

=> AK=HC( 2 cạnh tương ứng)

Mà BA= BH( tam giác ABD= tam giác BDH)

      BA+ AK= BK , BH+HC= BC

       => BK=BC

=> tam giác KBC cân tại B( đpcm)

24 tháng 4 2018

a) Xét tam giacd ABD và tam giác HBD có :

góc ABD = góc HBD ( vì BD là tia phân giác )

BD : cạnh chung 

Góc BAD = góc BHD = 90 độ

=> tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )

=> AD = DH ( cặp cạnh tương ứng )

b) Xét tam giác HDC có :

góc DHC = 90 độ ( vì kề bù với góc BHD = 90 độ )

=> DC > DH ( vì DC là cạnh đối diện với góc vuông )

mà AD = DH ( câu a)

=> AD < DC ( đpcm )

c) Vì  AB = BH ( vì tam giác ABD = tam giác HBD )

=> tam giác ABH cân

Xét tam giác ADK và tam giác HDC có 

AD = DH ( vì tam fiacs ABD = tam giác HBD )

góc KAD = góc CHD = 90

Góc ADK = góc HDC ( đối đỉnh )

=> tam giác ADK = tam giác HDC ( g-c-g )

=> AK = HC ( cặp cạnh tương ứng )

mà AB + AK = BK 

BH + CH = BD 

Mà AB = BH (cmt )

=> BK = BC 

=> tam giác KBC cân (đpcm )

Ta có hình vẽ sau: ( tự vẽ hình nha bạn)

a) Xét \(\Delta ABD\)và \(\Delta HBD\):

BD: cạnh chung

\(\widehat{ABD}=\widehat{HBD}\left(gt\right)\)

\(\widehat{BAD}=\widehat{BHD}=90^o\)

=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)

=> AD=HD( 2 cạnh tương ứng)

=> đpcm

b)Xét \(\Delta DHC\)vuông tại H có:

DC>HC 

Mà HD=AD ( cm câu a)

=> DC> AD

c) ( Câu này sai đề nè bạn, phải là tam giác BKC cân nha)

Xét \(\Delta ADK\)và \(\Delta HDC:\)

AD=HD( cm câu a)

\(\widehat{ADK}=\widehat{HDC}\left(đđ\right)\)

\(\widehat{DHK}=\widehat{DHC}=90^o\)

=> \(\Delta ADK=\Delta HDC\left(ch-gn\right)\)

=> AK=HC ( 2 cạnh t/ứ)

Mà AB=BH( \(\Delta ABD=\Delta HBD\))

=> AB+AK=HC+BH

=> BK=BC

=> \(\Delta BKC\)cân tại B

=> đpcm

2 tháng 5 2020

A B C D H K

a) Xét tam giác ABD và tam giác HBD có :

BD chung

^ABD = ^HBD ( BD là phân giác của ^B )

=> Tam giác ABD = tam giác HBD ( ch - gn )

=> AD = HD ( hai cạnh tương ứng )

=> AB = AH ( _________________ )

b) Ta có : ^BAD + ^DAK = 1800 ( kề bù )

                ^BHD + ^DHC = 1800 ( kề bù )

Mà ^BAD = ^BHD = 900

=> ^DAK = ^DHC = 900

Xét tam giác DAK và tam giác DHC có :

^DAK = ^DHC ( cmt )

DA = DH ( cmt )

^ADK = ^HDC ( đối đỉnh )

=> Tam giác DAK = tam giác DHC ( g.c.g )

=> AD = DC ( hai cạnh tương ứng )

=> AK = HC ( _________________ )

c) ( Phải là KBC cân nhé . ABC sao được . Với lại bạn nối KC cho mình . Vẽ hơi vội )

Ta có : BK = BA + AK

            BC = BH + HC

Mà BA = BH , AK = HC ( cmt )

=> BK = BC

Xét tam giác KBC có BK = BC ( cmt )

=> Tam giác KBC cân tại B ( đpcm )

 

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B

c: ΔBKC cân tại B

mà BM là trung tuyến

nên BM là phân giác của góc ABC

=>B,D,M thẳng hàng

8 tháng 4 2017

A B C 6 10 D H K

a, Xét \(\Delta ABC\)VUÔNG tại A

Áp dụng định lý pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB^2=BC^2-AC^2\)

\(\Rightarrow AB^2=10^2-6^2\)

\(\Rightarrow AB^2=100-36\)

\(\Rightarrow AB^2=64\)

\(\Rightarrow AB=\sqrt{64}=8\)

VẬY AB=8 cm

b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90độ\)

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)

\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)

c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)

lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)

\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)

Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:

\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)

Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)

\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\Delta KBC\) cân tại B

8 tháng 4 2017

uhuhuhu sợ bài này lắm rồi !