K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2016

\(\sqrt{\left(x+1995\right)^2}+\sqrt{\left(x+1996\right)^2}=\left|x+1995\right|+\left|x+1996\right|\)

\(=\left|-x-1995\right|+\left|x-1996\right|\)

Ta chứng minh Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\)

\(\Leftrightarrow a^2+b^2+2\left|ab\right|\ge a^2+b^2+2ab\)

\(\Leftrightarrow\left|ab\right|\ge ab\) luôn đúng

Dấu = khi \(ab\ge0\)

\(\Rightarrow\left|-x-1995\right|+\left|x+1996\right|\ge\left|-x-1995+x+1996\right|=1\)

Dấu = khi \(\left(x+1995\right)\left(x+1996\right)\ge0\)\(\Rightarrow1995\le x\le1996\)

\(\Rightarrow\hept{\begin{cases}1995\le x\le1996\\\left(x+1995\right)\left(x+1996\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1995\\x=-1996\end{cases}}\)

6 tháng 9 2016

Ta có

\(P=\sqrt{\left(x+1995\right)^2}+\sqrt{\left(x+1996\right)^2}\)

\(\Rightarrow P=\left|x+1995\right|+\left|x+1996\right|\)

\(\Rightarrow P=\left|-x-1995\right|+\left|x+1996\right|\)

Ta có \(\begin{cases}\left|-x-1995\right|\ge-x-1995\\\left|1996+x\right|\ge1996+x\end{cases}\)

\(\Rightarrow\left|-x-1995\right|+\left|x+1996\right|\ge-\left(x+1995\right)+\left(x+1996\right)\)

\(\Leftrightarrow P\ge1\)

Dấu " = " xảy ra khi \(\begin{cases}-\left(x+1995\right)\ge0\\x+1996\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\le-1995\\x\ge-1996\end{cases}\)

Vậy MINP=1 khi \(-1996x\le x\le-1995\)

6 tháng 9 2016

Ta có : \(P=\sqrt{\left(x+1995\right)^2}+\sqrt{\left(x+1996\right)^2}=\left|x+1995\right|+\left|x+1996\right|\)

\(=\left|-x-1995\right|+\left|x+1996\right|\ge\left|-x-1995+x+1996\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\begin{cases}-x-1995\ge0\\x+1996\ge0\end{cases}\) \(\Leftrightarrow-1996\le x\le-1995\)

Vậy Min P = 1 <=> \(-1996\le x\le-1995\)

1 tháng 5 2018

C = ..................................................................... ( giống cái đề bài )

   = ( x + 2017 ) + ( x + 2018 ) + ( x + 2019 )

   = ( x + x + x )  + ( 2017 + 2018 + 2019 )

   = 3x + 6054

Vì ( x + 2017 ) là căn bậc 2 của ( x+2017 )^2 => x+2017 > hoặc = 0

    ( x + 2018 ) ........................... ( x+2018)^2 => x+2018 > hoặc = 0

     ( x + 2019) ............................( x+2019 )^2 => x+2019 > hoặc = 0

SUY RA ( x+2017 ) + ( x+2018 ) + ( x+2019 ) > hoặc = 0 => 3x + 6054 > hoặc = 0

dấu đẳng thức xảy ra <=> 3x + 6054 = 0 <=> 3x = - 6054 <=> x = - 2018

Vậy C có GTNN là 0 khi x = - 2018

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào của a,b,c để biểu...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0
10 tháng 11 2016

Bài này cô cũng nghĩ là dùng phương pháp toa độ, chuyển qua hình học giải tích Oxy để giải.

Cô làm như sau:

Từ biểu thức P ta nghĩ đến công thức tính khoảng cách giữa hai điểm. Từ đó ta đặt \(A\left(-1;1\right);B\left(1;-1\right);C\left(-2;-2\right)\) và \(D\left(x;y\right)\). Khi đó ta thấy ngay \(P\left(x;y\right)=DA+DB+DC\)

Ta vẽ các điểm trên trục tọa độ:

?o?n th?ng f: ?o?n th?ng [A, C] ?o?n th?ng g: ?o?n th?ng [A, B] ?o?n th?ng h: ?o?n th?ng [C, B] ?o?n th?ng i: ?o?n th?ng [C, O] ?o?n th?ng j: ?o?n th?ng [A, D] ?o?n th?ng k: ?o?n th?ng [D, B] A = (-1, 1) A = (-1, 1) A = (-1, 1) B = (1.06, -1.14) B = (1.06, -1.14) B = (1.06, -1.14) C = (-2, -2) C = (-2, -2) C = (-2, -2) ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m D: ?i?m tr�n i ?i?m D: ?i?m tr�n i ?i?m D: ?i?m tr�n i

Vậy điểm D cần tìm là điểm tạo với các cạnh tam giác góc 120o. (Để hiểu rõ thêm e có thể đọc về điểm Toricenli của tam giác ABC). Do tam giác ABC cân tại C nên D thuộc CO, nói cách khác xD = yD.

Do \(\widehat{ADB}=120^o\Rightarrow\widehat{ADO}=60^o.\) Vậy thì \(tan60^o=\sqrt{3}=\frac{OA}{DO}\)

Do \(OA=\sqrt{2}\Rightarrow DO=\frac{\sqrt{2}}{\sqrt{3}}=\sqrt{\frac{2}{3}}\)

Vậy \(\sqrt{x_D^2+y_D^2}=\sqrt{2y_D^2}=\sqrt{\frac{2}{3}}\Rightarrow\left|x_D\right|=\left|y_D\right|=\frac{1}{\sqrt{3}}\). Từ hình vẽ ta có:  \(x_D=y_D=-\frac{1}{\sqrt{3}}.\)

Vậy \(P\left(x;y\right)=DA+DB+DC=\sqrt{\left(-\frac{1}{\sqrt{3}}+1\right)^2+\left(-\frac{1}{\sqrt{3}}-1\right)^2}\)

\(+\sqrt{\left(-\frac{1}{\sqrt{3}}-1\right)^2+\left(-\frac{1}{\sqrt{3}}+1\right)^2}+\sqrt{\left(-\frac{1}{\sqrt{3}}+2\right)^2+\left(-\frac{1}{\sqrt{3}}+2\right)^2}\)

\(=\sqrt{6}+2\sqrt{2}.\)

Vậy min P(x;y) = \(\sqrt{6}+2\sqrt{2}\) khi \(x=y=-\frac{1}{\sqrt{3}}.\)

8 tháng 11 2016

Sử dụng HÌNH HỌC GIẢI TÍCH OXY 

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Lời giải:

ĐKXĐ: $x\geq 0; x\neq 1$

\(P=\frac{x+\sqrt{x}-(x+2)}{\sqrt{x}+1}:\left[\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{\sqrt{x}-4}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)

\(=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-\sqrt{x}+\sqrt{x}-4}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{\sqrt{x}-2}{\sqrt{x}+1}.\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{(\sqrt{x}-2)(\sqrt{x}+2)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\)

Với mọi $x\geq 0; x\neq 1$ thì $\sqrt{x}+2\geq 2$

$\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}$

$\Rightarrow P=1-\frac{3}{\sqrt{x}+2}\geq 1-\frac{3}{2}=\frac{-1}{2}$
Vậy $P_{\min}=\frac{-1}{2}$ khi $x=0$