K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

\(\frac{-1}{2000\cdot1999}-\frac{1}{1999\cdot1998}-\frac{1}{1998\cdot1997}\)

\(=-\left(\frac{1}{2000\cdot1999}+\frac{1}{1999\cdot1998}+\frac{1}{1998\cdot1997}\right)\)

\(=-\left(\frac{1}{1997\cdot1998}+\frac{1}{1998\cdot1999}+\frac{1}{1999\cdot2000}\right)\)

\(=-\left(\frac{1}{1997}-\frac{1}{1998}+\frac{1}{1998}-\frac{1}{1999}+\frac{1}{1999}-\frac{1}{2000}\right)\)

\(=-\left(\frac{1}{1997}-\frac{1}{2000}\right)\)

\(=-\frac{3}{3994000}\)

\(\frac{1996X1997+1998X3}{1997X1999-1997X1997}\)=\(\frac{3986012+5994}{3992003-3988009}\)=\(\frac{3992006}{3994}\)=\(\frac{1996003}{1997}\)

21 tháng 6 2015

1996 x 1997 + 1998 x \(\frac{3}{1997}\)x 1999 - 1997 x 1997 

= 3986012 + \(\frac{5994}{1997}\)x 1999 - 1997 x 1997

= 3986012 + 6000003005 x 1999 - 1997 x 1997

=  3986012 + 1199400601 - 3988009

= 1203386613 - 3988009

= 1199398604

28 tháng 7 2015

\(\frac{1999.2001-1}{1998.1999.2000}.\frac{7}{5}:\frac{14}{15}\)=\(\frac{1.7.15}{1998.5.14}=\frac{1.1.3}{1998.1.2}=\frac{3}{3996}=\frac{1}{1332}\)

28 tháng 7 2015

\(A=\frac{1999\times\left(2000+1\right)-1}{1998\times1999\times2000}\times\frac{7}{5}\times\frac{15}{14}=\frac{1999\times2000+1999-1}{1998\times1999\times2000}\times\frac{7}{5}\times\frac{5\times3}{7\times2}\)

\(A=\frac{1999\times2000+1998}{1998\times1999\times2000}\times\frac{3}{2}=\frac{3999998\times3}{3\times666\times1999\times2000\times2}=\frac{1999999\times2}{666\times1999\times2000\times2}=\frac{1999999}{666\times1999\times2000}=...\)

Em xem lại đề: có thể đề là: 

A = \(\frac{1999\times2001-1}{1998+1999\times2000}\times\frac{7}{5}:\frac{14}{15}\)\(\frac{1999\times2000+1999-1}{1998\times1999\times2000}\times\frac{7}{5}\times\frac{5\times3}{7\times2}\)\(\frac{1999\times2000+1998}{1998+1999\times2000}\times\frac{3}{2}=1\times\frac{3}{2}=\frac{3}{2}\)

23 tháng 5 2017

\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}+2000}{1+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}}\)

\(=\frac{\left[\frac{2001}{1}+1\right]+\left[\frac{2001}{2}+1\right]+...+\left[\frac{2001}{2000}+1\right]+2001}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}\)

\(=\frac{2001\left[1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}\right]}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}=2001\)

23 tháng 5 2017

$\ge $ 

24 tháng 10 2017

ed aakrta9 rf, j,ear ,eru8refj eru jrae ear9ffnxvn 

2 tháng 4 2016

Ở mẫu số, bạn tách 1999/1 thaanhf 1999 số 1, sau đó nhóm với các số hạng khác, kết quả là mẫu gấp 2000 laf tử

Vậy E=1/2000

2 tháng 4 2016

bạn giải chi tiết giúp mình dc ko

31 tháng 7 2015

Án vào đây 

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48