K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

Ta có (a + c)2 < ab + bc - 2ac

<=> ab + bc - a2 - c2 - 4ac > 0 (1)

Ta lại có a2 + b+ c2 \(\ge\)ab + bc +ca > ab + bc (2)

Từ (1) và (2) => b- 4ac > 0

Vậy PT luôn có nghiệm

13 tháng 6 2018

Ta có: \(\Delta=b^2-4ac\)

Lại có: \(\left(a+c\right)^2< ab+bc-2ac\)

\(\Rightarrow-2ac>b\left(a+c\right)+\left(a+c\right)^2\)

\(\Rightarrow\Delta=b^2-4ac>b^2+2b\left(a+c\right)+2\left(a+c\right)^2\)

\(\Rightarrow\Delta>\left(a+b+c\right)^2+\left(a+c\right)^2>0\)

Suy ra phương trình \(ax^2+bx+c\) luôn có nghiệm

30 tháng 7 2019

Ta có: \(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow a^2+b^2+c^2+\left(a+b+c\right)=a^2+b^2+c^2\)

\(\Leftrightarrow a+b+c=0\left(1\right)\)

Lại có:\(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2-b^2=-a\\b^2-c^2=-b\\c^2-a^2=-c\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right).\left(a+b\right)=-a\\\left(b-c\right).\left(b+c\right)=-b\\\left(c-a\right).\left(c+a\right)=-c\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)=-\frac{a}{a+b}\\\left(b-c\right)=-\frac{b}{b+c}\\\left(c-a\right)=-\frac{c}{a+c}\end{cases}}\)

Từ (1) \(\Rightarrow\left(a-b\right).\left(b-c\right).\left(c-a\right)=-\left(\frac{a}{a+b}\cdot\frac{b}{b+c}\cdot\frac{c}{a+c}\right)=\frac{-abc}{-c.\left(-a\right).\left(-b\right)}=1\)

7 tháng 2 2017

vyjbhtu yi

23 tháng 1 2016

(+) điều kiện đủ : giả sử ta có : \(kb^2=\left(k+1\right)^2ac\) (1)

g/s PT \(ax^2+bx+c=0\) luôn có hai nghiệm x1 ; x2 ; 

Theo hệ thức Viete ta có : \(\int^{x1x2=\frac{c}{a}}_{x1+x2=-\frac{b}{a}}\)

Từ (1) => \(\frac{kb^2}{a^2}=\frac{\left(k+1\right)^2c}{a}\Leftrightarrow k\left(-\frac{b}{a}\right)^2-\frac{\left(k+1\right)^2c}{a}=0\)

<=> \(k\left(x1+x2\right)-\left(k+1\right)^2x1x2\) = 0 

<=> \(k\left(x1+x2\right)-\left(k^2+2k+1\right)x1x2=0\)

 <=> \(kx1^2+2kx1x2+kx2^2-k^2x1x2-2kx1x2-x1x2=0\)

<=> \(kx1^2+kx2^2-k^2x1x2-x1x2\)

<=> \(kx1\left(x1-kx2\right)+x2\left(kx2-x1\right)=0\)

<=> \(\left(x1-kx2\right)\left(kx1-x2\right)=0\)

<=> x1 = kx2 hoặc x2 = kx1 

1 tháng 8 2019

#)Giải :

Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}\Rightarrow ax+by+bx+cy+cx+ay=c+a+b}\)

\(\Rightarrow x\left(a+b+c\right)+y\left(a+c+b\right)=a+b+c\)

\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)

\(=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)

\(\Rightarrowđpcm\)

1 tháng 8 2019

Bài giải thiếu trường hợp \(x+y-1=0\) rồi