- Tính nhanh: A=1/99.98-1/98.97-...-1/3.2-1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=\frac{1}{99.98}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}\right)\)
\(A=\frac{1}{98.99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}\right)\)
\(A=\frac{1}{98.99}-\left(1-\frac{1}{98}\right)\)
\(A=\frac{1}{98.99}-\frac{97}{98}=-\frac{4801}{4851}\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\frac{99}{100}\)
\(C=\frac{-98}{100}=\frac{-49}{50}\)
Ủng hộ mk nha ^_-
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{97.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(\frac{1}{100}-C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\frac{1}{100}-C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{100}-C=1-\frac{1}{100}\)
\(C=C=\frac{1}{50}-1=-\frac{49}{50}\)
C=1/100-(1/100.99+1/99.98+...+1/3.2+1/2.1)
=1/100-(1-1/2+1/2_1/3+...+1/99-1/100)
=1/100-(1-1/100)
=1/100-99/100
=1/100 chọn cho mình nha!
\(A=\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=\frac{1}{98.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}\right)\)
\(A=\frac{1}{9702}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}\right)\)
\(A=\frac{1}{9702}-\left(1-\frac{1}{98}\right)\)
\(A=\frac{1}{9702}-\frac{97}{98}\)
\(A=-\frac{4801}{4851}\)