Cho tam giác ABC có A^=1200. Từ C kẻ đường thẳng song song đường phân giác AD của tam giác ABC, đường thẳng này cắt đường thẳng BA ở M. Tính AMC và ACM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có AD là tia phân giác góc BAC => Góc BAD = góc BAC/2=70/2=35 độ
có BE // AD => góc BAD= góc ABE = 35 độ ( so le trong )
Có góc BAC + góc BAE = 180 độ ( kề bù )
=> góc BAE = 180 độ - góc BAC = 180 - 70 = 110 độ
Có BAE + ABE + AEB = 180 độ ( tổng 3 góc tam giác AEB )
=> AEB = 180 - BAE - ABE = 180 -110-35=35 độ
Ta có hình vẽ:
Câu d mình quên kí hiệu vuông góc rồi, bạn tự bổ sung nhé
a/ Xét tam giác AMB và tam giác AMC có:
AB = AC (GT)
BM = MC (GT)
AM : cạnh chung
=> tam giác AMB = tam giác AMC (c.c.c)
b/ Xét tam giác AEM và tam giác AFM có:
\(\widehat{E}\)=\(\widehat{F}\)=900
AM : cạnh chung
\(\widehat{EAM}\)=\(\widehat{FAM}\) ( vì tam giác AMB = tam giác AMC)
Vậy tam giác AEM = tam giác AFM (g.c.g)
=> AE = AF (2 cạnh tương ứng)
c/ Xét tam giác EBM và tam giác FCM có:
\(\widehat{E}\)=\(\widehat{F}\)=900
BM = MC (GT)
\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)
Vậy tam giác EBM = tam giác FCM
(theo trường hợp cạnh huyền góc nhọn)
=> BE = FM (2 cạnh tương ứng) (1)
Ta có: EM: cạnh chung (2)
Ta có: 2 tam giác AEM và tam giác AFM đối xứng qua cạnh chung AM và có: \(\widehat{E}\)=\(\widehat{F}\)=900
=> \(\widehat{EMF}\) = 900 = \(\widehat{BEM}\) (3)
Từ (1),(2),(3) => tam giác BEM = tam giác EFM
=> \(\widehat{FEM}\)=\(\widehat{EMB}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> EF // BC
d/ Xét tam giác ABN và tam giác ACN có:
AB = AC (GT)
\(\widehat{BAN}\)=\(\widehat{CAN}\) (vì tam giác AMB = tam giác AMC)
AN: chung
=> tam giác ABN = tam giác ACN (c.g.c)
BN = CN ( 2 cạnh tương ứng)
Xét tam giác BMN và tam giác CMN có:
MN: chung
BM = MC (GT)
BN = CN (đã chứng minh)
=> tam giác BMN = tam giác CMN (c.c.c)
-Ta có: tam giác ABM = tam giác ACM (câu a)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
Mà \(\widehat{AMB}\)+\(\widehat{AMC}\) = 1800 (kề bù)
=> góc AMB = góc AMC = 900
-Ta có: tam giác BMN = tam giác CMN (đã chứng minh)
=> \(\widehat{BMN}\)=\(\widehat{CMN}\) (2 góc tương ứng)
mà \(\widehat{BMN}\)+\(\widehat{CMN}\)=1800 (kề bù)
=> góc BMN = góc CMN = 900
Ta có: \(\widehat{AMB}\)+\(\widehat{BMN}\)=900+900 = 1800
hay \(\widehat{AMC}\)+\(\widehat{CMN}\)=900+900 = 1800
hay A,M,N thẳng hàng
a/ ta có M= <ACD ( cùng phụ với <ADC)
mà <M+ < MEA= 90
<ACD+ <ADC= 90
suy ra : <MEA=<ADC
xét tam giác MEA và ACD :
<MEA=<ADC(cmt)
AE=AD
2 tam giác này bằng nhau thep trường hợp : cạn góc vuông - góc nhọn kề
Ta có : \(A\widehat{_1}\)=\(\widehat{ADE}\)( 2 góc so le trong , DE // AB ) (1)
\(\widehat{A_1}=\widehat{A_2}\) ( Góc phân giác của góc A ) (2)
Từ ( 1) và (2) suy ra : \(\widehat{ADE}\)=\(\widehat{A_2}\)
=> \(\Delta\)ADE là tam giác cân
các bạn tự vẽ hình, bài này đơn giản: vì AD//ME nên góc E = góc A2 (đồng vị)
và góc F2 = góc A1 (đồng vị)
mà góc A1 = góc A2 (T/c phân giác) nên E = F2 , mặt khác góc F1 = góc F2 (đối đỉnh)
nên suy ra góc E = góc F1 hay là góc AFE = AEF (điều phải chứng minh)
(Hình giống như bài bên kia, khác chỗ A^ = 120o)
BAD^ + DAC^ = BAC^
Mà BAD^ = DAC^
=> BAD^ = DAC^ = BAC^/2 = 120o/2= 60o
Ta có: AD // CM
=> DAC^ = ACM^ = 60o (sole trong)
=> BAD^ = AMC^ = 60o (đồng vị)