Tìm x,y
x^2+y^2=x^3+y^3=x^4+y^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
a) Ta có: \(12x{y^2}x = 12.\left( {x.x} \right).{y^2} = 12{x^2}{y^2}\)
Đơn thức trên có hệ số là \(12\), bậc bằng \(2 + 2 = 4\).
b) Ta có: \( - y\left( {2z} \right)y = - 2.\left( {y.y} \right).z = - 2{y^2}z\)
Đơn thức trên có hệ số là \( - 2\), bậc bằng \(2 + 1 = 3\).
c) Ta có: \({x^3}yx = \left( {{x^3}.x} \right).y = {x^4}y\)
Đơn thức trên có hệ số là \(1\), bậc bằng \(4 + 1 = 5\).
d) Ta có: \(5{x^2}{y^3}{z^4}y = 5{x^2}.\left( {{y^3}.y} \right).{z^4} = 5{x^2}{y^4}{z^4}\)
Đơn thức trên có hệ số là \(5\), bậc bằng \(2 + 4 + 4 = 10\).
Bạn xem lại đề bài. Đây là phương trình chứ đâu phải đa thức để phân tích thành nhân tử.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
\(=x^4y^2x^2\left(-x\right)^2\left(-y\right)^3\)
\(=\left[x^4x^2\left(-x\right)^2\right]\left[y^2\left(-y\right)^3\right]\)
\(=-x^8.-y^5\)
x=0; y=1