So sánh 21000 và 5400 (giải chi tiết dùm mình nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)
\(\Leftrightarrow-n^3+n⋮n^3+1\)
\(\Leftrightarrow n=1\)
134/43 = 3,1162... bé - lớn : 55/21 ; 134/43 ; 116/37 ; 74/19
55/21 = 2,6190... lớn - bé : (ngược lại)
74/19 = 3,8947...
116/37 = 3,1351...
\(6-\sqrt{17}=\sqrt{36}-\sqrt{17}\)
Với :
\(\sqrt{36}-\sqrt{17}>\sqrt{31}-\sqrt{17}\)
Mặt khác :
\(\sqrt{31}-\sqrt{17}>\sqrt{31}-\sqrt{19}\)
Nên :
\(6-\sqrt{17}>\sqrt{31}-\sqrt{19}\)
Cách khác:
Ta có: \(\left(\sqrt{31}-\sqrt{19}\right)^2=50-2\sqrt{589}\)
\(\left(6-\sqrt{17}\right)^2=53-12\sqrt{17}=50+3-12\sqrt{17}\)
mà \(-2\sqrt{589}< 3-12\sqrt{17}\)
nên \(\sqrt{31}-\sqrt{19}>6-\sqrt{17}\)
4100 và 2200
2200 = (22)100 = 4100
Vì 4100 = 4100 nên => 4100 = 2200
a, \(\sqrt{15}+\sqrt{8}< \sqrt{16}+\sqrt{9}=4+3=7\)
\(\Rightarrow\sqrt{15}+\sqrt{8}< 7\)
b, \(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=3+4+1=8\)
\(\sqrt{61}< \sqrt{64}=8\)
\(\Rightarrow\sqrt{10}+\sqrt{17}+1>\sqrt{61}\)
c, \(\sqrt{10}+\sqrt{5}+1>\sqrt{9}+\sqrt{4}+1=3+2+1=6\)
\(\sqrt{35}< \sqrt{36}=6\)
\(\Rightarrow\sqrt{10}+\sqrt{5}+1>\sqrt{35}\)
Ta có :
- 9999=101.99\(\Rightarrow\)999910=(101.99)10=10110.9910
- 9920=9910+10=9910.9910
Vì 10110>9910\(\Leftrightarrow\)10110.9910>9910.9910\(\Leftrightarrow\)999910>9920
Vậy 999910>9920
21000 = (25)200 = 32200
5400= (52)200 =25200
vì 32 > 25 nên 32200> 25200 =>21000>5400
nhớ k mik nha
Ta có:
21000 = (25)200 = 32200
5400 = (52)200 = 25200
Vì 32200 > 25200
=> 21000 > 5400