K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b,c: Bạn ghi rõ đề lại đi bạn

2 tháng 5 2022

a. Xét tam giác ABC và tam giác HBA có:

góc A= góc H= 90o

góc B chung

=> tam giác ABC ~ tam giác HBA (g.g)

=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)

=> AB2= BH.BC

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: Xét ΔBAC có BF là phân giác

nên AF/AB=CF/CB

=>AF*CB=AB*CF

a: Xét ΔABC và ΔHBA có

góc B chung

góc BAC=góc BHA

=>ΔABC đồng dạng vơi ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: ΔABD vuông tại A có AK vuông góc BD

nên BK*BD=BA^2=BH*BC

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA

=>BH/AB=BC/BA(1)

hay \(AB^2=BH\cdot BC\)

Câu b đề sai rồi bạn

26 tháng 2 2022

Cảm ơn bạn nhiều. Giải mình câu C nhé. Cảm ơn bạn

 

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tuong ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)(đpcm)

b) Xét ΔCHA vuông tại H và ΔAHB vuông tại H có 

\(\widehat{HAC}=\widehat{HBA}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔCHA\(\sim\)ΔAHB(g-g)

Suy ra: \(\dfrac{CA}{AB}=\dfrac{HA}{HB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AC}{HA}=\dfrac{AB}{BH}\)(1)

Xét ΔHBA có BI là đường phân giác ứng với cạnh AH(gt)

nên \(\dfrac{IA}{IH}=\dfrac{AB}{BH}\)(2)

Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(3)

c) Xét ΔAHC có AK là đường phân giác ứng với cạnh CH(gt)

nên \(\dfrac{CK}{KH}=\dfrac{AC}{HA}\)(4)

Từ (3) và (4) suy ra \(\dfrac{CK}{KH}=\dfrac{AI}{IH}\)

hay KI//AC(Định lí Ta lét đảo)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng vơi ΔHBA

=>AC/HA=AB/HB=BC/AB

=>AB^2=BH*BC; AC*AB=AH*BC

b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạngvới ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

d: AI/IC=AB/BC

KH/AH=BH/BA

mà AB/BC=BH/BA

nên AI/IC=KH/AH

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(\dfrac{S_{HBA}}{S_{ABC}}=\left(\dfrac{BA}{BC}\right)^2=\dfrac{9}{25}\)

c: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=7.2\left(cm\right)\)

CH=BC-BH=12,8(cm)

28 tháng 3 2023

giúp mik vs mik cần gấp ạ!!!!

 

a: Xet ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng vơi ΔHAC

=>CA/CH=CB/CA=AB/HA
=>CA^2=CH*BC và AB*HC=HA*CA

b: góc AID=góc BIH=90 độ=góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

=>ΔADI cân tại A

loading...  loading...