K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

ΔADH vuông tại H

=> DH = √(AD²- AH²) = √(2²-√3²) = 1

Ta lại có : AD² = DH. DB

=> BD = AD²: DH = 2²:1= 4

ΔABD vuông tại A

=> AB = √(BD²- AD²) = √(4²-2²) = 2√3

Chu vi hcn ABCD là : 

2(AB + AD)= 2(2+2√3)=4+4√3 (cm)

22 tháng 9 2021

Hình tự vẽ nha bạn

Xét tam giác ABD vuông tại A (ABCD là hình chứ nhật nên góc A = 90 độ)

Áp dụng hệ thức lượng trong tam giác vuông

\(\dfrac{1}{AD^2}+\dfrac{1}{AB^2}=\dfrac{1}{AH^2}\)

Thay số vào tính được AD = 15cm

Chu vi HCN = (20+15).2 = 70cm

22 tháng 9 2021

Xét tam giác AHB vuông tại H có

\(AH^2+HB^2=AB^2\)( đl PYtago)

T/s \(12^2+HB^2=20^2\)

=>\(HB^2=20^2-12^2\)

=> \(HB^2=256\)

=> \(HB=16\)

Xét tam giác DAB vuông tại A có

\(AH^2=DH.HB\)

⇔ \(12^2=DH.16\)

=> \(DH=24\)

Xét tam giác AHD vuong tại H có

\(AH^2+DH^2=AD^2\)( đl Pyta go)

T/s \(12^2+24^2=AD^2\)

=> AD = \(12\sqrt{5}\)

Chu vi HCN ABCD là

( AB + AD ).2

= ( 20 +12\(\sqrt{5}\)).2

= 93,6 cm

Vây chu vi là 93,6 cm

8 tháng 10 2019

hình bạn tự vẽ nha

áp dụng định lý py ta go vào tam giác ABD ta có AD^2 + AB^2 =64 (1)

áp dụng định lý pytago vào tam giác ABH ta có AB^2 = AH^2+ 36  (2)

áp dụng định lý pytago vào tam giác AHD ta có AD^2= AH^2 +4     (3)

thay (2)và (3) vào (1)

ta có 2AH^2 =24

=> AH^2 =12

thay AH^2=12 lần lượt vào 2 và 3

=> AB^2=12+36=48=>AB=\(\sqrt{48}\)

     AD^2=12+4=16 => AD=4

24 tháng 5 2023

loading...  

BH=căn 10^2-6^2=8cm

=>BD=10^2/8=12,5cm

=>AD=7,5cm

S ABCD=7,5*10=75cm2

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc ABD chung

=>ΔABD đồng dạng với ΔHBA

b: BD=căn 3^2+4^2=5cm

HB=AB^2/BD=3,2cm

c: AD là phân giác

=>ED/EB=AD/AB

mà AD/AB=AH/BH

nên ED/EB=AH/BH

5 tháng 7 2023

Hạ đường cao AH của tam giác ABD => AH=14,4cm

Pytago => AD^2-AH^2=DH^2

            => DH^2=116,64

            => DH=10,8cm

HT lượng => HA^2=HB.HC

                => HB=HA^2/HB=14,4^2/10,8=19,2cm

=> BD=HD+HB=10,8+19,2=30m

Pytago => AB^2=AH^2+HB^2=576

            => AB=24cm

=> chu vi HCN ABCD là: 2(AB+AD)=2(18+24)=84(cm^2)

a) Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow BD^2=6^2+8^2=100\)

hay BD=10(cm)

b) Xét ΔDHA vuông tại H và ΔDAB vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔDHA\(\sim\)ΔDAB(g-g)