Cho tam giác ABC (AB < AC) có AH là đường cao, AM là đường trung tuyến. Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Trên tia đối của tia MA lấy điểm I sao cho MI = MA. Chứng minh BE = CI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
a, Ta có: AM là đường trung tuyến
=> MB=MC
* Xét tam giác AMB và tam giác IMC có:
MA=MI ( theo gt)
AMB=CMI (đối đỉnh)
MB=MC( Chứng minh trên)
=>Tam giác AMB= tam giác IMC (c.g.c)
=> góc BAM=góc CIM ( góc tương ứng)
Mà hai góc này ở vị trí so le trong nên
=> AB//CI (ĐPCM)
* Xét tam giác ABH và tam giác EBH có:
góc AHB= góc EHB = 90 độ
AH= EH ( gt)
BH chung
=> Tam giác ABH= tam giác EBH ( hai cạnh góc vuông)
=> AB = BE ( Cạnh tương ứng)
Ta lại có: Vì tam giác AMB= tam giác IMC
=> AB=IC( cạnh tương ứng)
Mà AB= BE và AB=IC
Theo tính chất bắc cầu thì BE=IC
=> BE=IC( ĐPCM)
a) Xét ΔABM và ΔFCM có
AM=FM(gt)
\(\widehat{AMB}=\widehat{FMC}\)(hai góc đối đỉnh)
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔFCM(c-g-c)
b) Xét ΔBMF và ΔCMA có
BM=CM(M là trung điểm của BC)
\(\widehat{BMF}=\widehat{CMA}\)(hai góc đối đỉnh)
FM=AM(gt)
Do đó: ΔBMF=ΔCMA(c-g-c)
nên \(\widehat{FBM}=\widehat{ACM}\)(hai góc tương ứng)
mà \(\widehat{FBM}\) và \(\widehat{ACM}\) là hai góc ở vị trí so le trong
nên BF//AC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: ΔABM=ΔFCM(cmt)
nên \(\widehat{ABM}=\widehat{FCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{FCM}\) là hai góc ở vị trí so le trong
nên AB//CF(Dấu hiệu nhận biết hai đường thẳng song song)
a) Xét ΔABM và ΔFCM có
AM=FM(gt)
\(\widehat{AMB}=\widehat{FMC}\)(hai góc đối đỉnh)
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔFCM(c-g-c)
b) Xét ΔBMF và ΔCMA có
BM=CM(M là trung điểm của BC)
\(\widehat{BMF}=\widehat{CMA}\)(hai góc đối đỉnh)
FM=AM(gt)
Do đó: ΔBMF=ΔCMA(c-g-c)
nên \(\widehat{FBM}=\widehat{ACM}\)(hai góc tương ứng)
mà \(\widehat{FBM}\) và \(\widehat{ACM}\) là hai góc ở vị trí so le trong
nên BF//AC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: ΔABM=ΔFCM(cmt)
nên \(\widehat{ABM}=\widehat{FCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{FCM}\) là hai góc ở vị trí so le trong
nên AB//CF(Dấu hiệu nhận biết hai đường thẳng song song)
Kẻ AK vuông góc với EI
Vì AC=CI nên tam giác ACI cân tại C suy ra góc CAI = góc CIA. Mà CAI+CIA=90 độ suy ra góc CAI = góc CIA=45 độ
Ta lại có: CIA+AIK=90 độ nên góc AIK=45 độ
Xét tam giác ACI và tam giác AKI có:
AI: cạnh huyền chung
góc AIK = góc AIC
nên tam giác ACI = tam giác AKI ( cạnh huyền - góc nhọn )
suy ra AK = AC ; KI = IC ( cặp cạnh tương ứng ) (1)
góc AKI = ACI = 90 độ ( cặp góc tương ứng )
nên góc AKE = 90 độ ( kề bù với góc AKI )
Ta có góc AEK+EAK = 90, ABC+MAB=90, mà EAK=BAH ( đối đỉnh ) nên góc ABC=AEK
Xét tam giác AKE và tam giác BAC có:
góc AEK = ABC
cạnh AK = AC ( chứng minh ở 1 )
nên tam giác AKE = tam giác BAC ( góc nhọn - cạnh góc vuông)
suy ra AE = BC ( cặp cạnh tương ứng )
nhớ tích nha. cảm ơn mấy bạn.
Xét tứ giác ABIC có
M là trung điểm của AI
M là trung điểm của BC
Do đó: ABIC là hình bình hành
Suy ra: CI=AB(1)
Xét ΔABE có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABE cân tại B
=>BA=BE(2)
Từ (1) và (2) suy ra BE=CI