Cho ΔABC vuông tại A. Nửa đường tròn đường kính AB cắt BC tại D. Trên cung AD lấy một điểm E. Nối BE và kéo dài cắt AC tại F.
Chứng minh CDEF là một tứ giác nội tiếp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c
Cho tam giác vuông tại . Nửa đường tròn đường kính cắt tại . Trên cung lấy một điểm . Nối và kéo dài cắt tại . Chứng minh là tứ giác nội tiếp.
theo gt, ta có: DAB = BCA= 90 - CBA
(Tính chất tổng các góc trong tam giác BCA và tam giác BAD)
Mặt khác DEB = DAB ( Cùng chắn cung DB)
=> DEB= BCA => Đpcm
Dễ thấy \(\Delta AFE~\Delta BAE\left(g.g\right)\)
\(\Rightarrow\widehat{AFE}=\widehat{BAE}\)
mà \(AEDB\)nội tiếp nên \(\widehat{BAE}+\widehat{BDE}=180^o\)
\(\Rightarrow\widehat{AFE}+\widehat{BDE}=180^o\)
\(\Rightarrow\widehat{CFE}+\widehat{CDE}=180^o\)
suy ra \(CDEF\)nội tiếp.
1: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC\(\perp\)CB tại C
=>AC\(\perp\)BF tại C
Xét tứ giác EDBC có
\(\widehat{EDB}+\widehat{ECB}=90^0+90^0=180^0\)
=>EDBC là tứ giác nội tiếp
Xét tứ giác ADCF có
\(\widehat{ADF}=\widehat{ACF}=90^0\)
=>ADCF là tứ giác nội tiếp
2: EDBC là tứ giác nội tiếp
=>\(\widehat{DEC}+\widehat{DBC}=180^0\)
mà \(\widehat{DEC}+\widehat{IEC}=180^0\)(kề bù)
nên \(\widehat{IEC}=\widehat{DBC}\)
3: \(\widehat{IEC}=\widehat{DBC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AC}\)(góc DBC là góc nội tiếp chắn cung AC)
\(\widehat{ICE}=\dfrac{1}{2}\cdot sđ\stackrel\frown{CA}\)(góc ICE là góc tạo bởi tiếp tuyến IC và dây cung CA)
Do đó: \(\widehat{IEC}=\widehat{ICE}\)
=>IE=IC
\(\widehat{IEC}+\widehat{IFC}=90^0\)(ΔFCE vuông tại C)
\(\widehat{ICE}+\widehat{ICF}=\widehat{FCE}=90^0\)
mà \(\widehat{IEC}=\widehat{ICE}\)
nên \(\widehat{IFC}=\widehat{ICF}\)
=>IF=IC
mà IC=IE
nên IF=IC=IE
=>I là tâm đường tròn ngoại tiếp ΔCFE