K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

A<B đó 

đảm bao 100% luôn

31 tháng 8 2017

bạn ghi cách giải ra giúp mình với

21 tháng 9 2017

mk nghĩ là a>b

16 tháng 11 2017

a>b 100% đúng^_^

17 tháng 6 2019

Trả lời

a,A > B

b,A < B.

Mk ko chắc nữa !

a)nếu 200910+9=200919  

vậy 200919>201010suy ra A>B

nếu 36:32=4      và 47:43  =47-3=44

vậy 4<44  suy ra  A<B

chúc bn 

hok tốt

10 tháng 10 2016

a,19^2005+ 11^2004 =19^4.501.19

                              =x1.x9

                              =x9

11^2004=11^4.501

            =x1

x1+x9= y0

suy ra điều cần phải chứng minh 

tương tự 2 câu còn lại

11 tháng 10 2019

c, \(2^{300}\)và \(3^{200}\)

Ta có

\(2^{300}=8^{100}\)

\(3^{200}=9^{100}\)

Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

d, \(3^{300}\)và \(4^{200}\)

Ta có

\(3^{300}=27^{100}\)

\(4^{200}=16^{100}\)

Vì \(16^{100}< 27^{100}\Rightarrow3^{300}>4^{200}\)

a,b mik lười làm quá

11 tháng 10 2019

a, Ta có: S = 10 + 12 + 14 + ... + 2010

Các số hạng cách đều nhau 2 đơn vị.

Có số số hạng là: ( 2010 - 10 ) / 2 + 1 = 500 (số)

\(\Rightarrow\)S = ( 2010 +10 ) * 500 / 2

\(\Rightarrow\)S = 505000

Vậy S = 505000

b, Ta có: S = 1 + 2 + 3 + ... + 999

Các số hạng cách đều nhau 1 đơn vị.

Có số số hạng là: ( 999 - 1 ) / 1 +1 =  999 (số)

\(\Rightarrow\) S = ( 999 + 1 ) * 999 / 2 =  499500

Vậy S = 499500

c, 2300 và 3200

Ta có: 2300 = (23)100 = 8100

3200 = (32)100 = 9100

Vì 9 > 8 > 1 và 100 > 0

\(\Rightarrow\)9100 > 8100

Hay 2300 = 3200

Vậy 2300 = 3200

d, 3300 và 4200

Ta có: 3300 = (33)100 = 27100

4200 = (42)100 = 16100

Vì 27 > 16 > 1 và 100 > 0

\(\Rightarrow\)27100 > 16100

Hay 3300 > 4200

Vậy 3300 > 4200

24 tháng 9 2020

Ta có : \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1^{2019}=1\)

Vì \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}< 1\)

=> \(\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)

24 tháng 9 2020

       Bài làm :

Cách 1:

Ta có :

 \(\frac{2^9}{3^{2010}}\div\frac{3^9}{2^{2010}}=\frac{2^9.2^{2010}}{3^{2010}.3^9}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1\)

 \(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)

Cách 2 :

Nhận thấy :

  • 29 < 39
  • 32010 > 22010

\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)