K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

vì |x − 1| + |x + 2| = x − 3 suy ra x-3>=0 suy ra x>=3 suy ra x-1>0,x+2>0 suy ra |x − 1| + |x + 2| = x-1+x+2

|x − 1| + |x + 2| = x − 3

x-1+x+2=x-3

x=-3-2+1

x=-4/loại

vậy ko tìm đc x

27 tháng 8 2021

Bài 1: |x − 1| + |x + 2| = x − 3 (*)

Xét x < - 2 thì phương trình (*) có dạng:

(1 - x) + ( - x - 2 ) = x - 3

<=> - 2x - 1 = x - 3

<=> 3x = 2 <=> \(x = {{2} \over 3}\)( Loại)

Xét - 2 ≤ x ≤ 1 thì phương trình (*) có dạng:

(1 - x ) + ( x + 2 ) = x - 3

<=> x - 3 = 3

<=> x = 6 ( Loại )

Xét x > 1 phương trình (*) có dạng:

x - 1 + x + 2 = x - 3

<=> 2x + 1 = x - 3

<=> x = - 4 ( Loại)

Vậy phương trình vô nghiệm

1 tháng 5 2022

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

-Dấu "=" xảy ra khi \(a=b=c\)

 

7 tháng 10 2017

Sr chụy nha, em chưa học tới ~ :]]]

7 tháng 10 2017

bdt tương đương với  \(a^2+b^2+c^2+d^2+2ac+2bd\le a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)

\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2\left(ac+bd\right)\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(b^2+d^2\right)}\ge ac+bd\)

neu ac+bd \(\le0\) thi bdt can duoc cm 

neu ac+bd \(\ge0\) thi \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2abcd\)

                \(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

 \(\Leftrightarrow b^2c^2+a^2d^2-2abcd\ge0\Leftrightarrow\left(bc-ad\right)^2\ge0\left(dpcm\right)\)