Cho a, b là các số thực bất kỳ. Chứng minh: a^2 + b^2 + ab ≥ 3(a+b)^2 / 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: |x − 1| + |x + 2| = x − 3 (*)
Xét x < - 2 thì phương trình (*) có dạng:
(1 - x) + ( - x - 2 ) = x - 3
<=> - 2x - 1 = x - 3
<=> 3x = 2 <=> \(x = {{2} \over 3}\)( Loại)
Xét - 2 ≤ x ≤ 1 thì phương trình (*) có dạng:
(1 - x ) + ( x + 2 ) = x - 3
<=> x - 3 = 3
<=> x = 6 ( Loại )
Xét x > 1 phương trình (*) có dạng:
x - 1 + x + 2 = x - 3
<=> 2x + 1 = x - 3
<=> x = - 4 ( Loại)
Vậy phương trình vô nghiệm
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
-Dấu "=" xảy ra khi \(a=b=c\)
bdt tương đương với \(a^2+b^2+c^2+d^2+2ac+2bd\le a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)
\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2\left(ac+bd\right)\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(b^2+d^2\right)}\ge ac+bd\)
neu ac+bd \(\le0\) thi bdt can duoc cm
neu ac+bd \(\ge0\) thi \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow b^2c^2+a^2d^2-2abcd\ge0\Leftrightarrow\left(bc-ad\right)^2\ge0\left(dpcm\right)\)