Tìm x , y , z
\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}\)
ghi rõ lời giải
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Do đó :
\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)
\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)
\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)
Suy ra :
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(P=8\)
Đề hơi sai
a) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow x+y+z=\frac{1}{2}\)(do 1/(x+y+z)=2)
\(\Rightarrow y+z=\frac{1}{2}-x;z+x=\frac{1}{2}-y;x+y=\frac{1}{2}-z\)
Thay vào lần lượt ta có:
\(\frac{\frac{1}{2}-x+1}{x}=2\)\(\Rightarrow x=\frac{1}{2}\)
\(\frac{\frac{1}{2}-y+2}{y}=2\)\(\Rightarrow y=\frac{5}{6}\)
\(\frac{\frac{1}{2}-z-3}{z}=2\)\(\Rightarrow z=-\frac{5}{6}\)
Từ bài → x+y/z= y+z/ x=x+z/y =2 ( Áp dụng tính chất dãy tỉ số bằng nhau)
→ x+y= 2z
Mà x+y =kz
→ 2z= kz
→k=2
Thấy đúng thí tick nha
áp dụng bdt cô si dạng " Rei' ta có
\(x+y+1\le3\sqrt[3]{xy}\)
từ đề bài ta suy ra \(xy=\frac{1}{z}\Leftrightarrow\sqrt[3]{xy}=\frac{1}{\sqrt[3]{z}}\)
suy ra \(3\sqrt[3]{xy}=3\sqrt[3]{\frac{1}{z}}=\frac{3}{\sqrt[3]{z}}\)
áp dụng cho các BDT còn lại
\(3\sqrt[3]{yz}=\frac{3}{\sqrt[3]{x}};3\sqrt[3]{xz}=\frac{3}{\sqrt[3]{y}}\)
suy ra \(Q\le\frac{1}{\frac{3}{\sqrt[3]{z}}}+\frac{1}{\frac{3}{\sqrt[3]{y}}}+\frac{1}{\frac{3}{\sqrt[3]{x}}}=\frac{\sqrt[3]{z}}{3}+\frac{\sqrt[3]{y}}{3}+\frac{\sqrt[3]{x}}{3}\) Nhân ngược lên
vậy
\(Q\le\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\)
áp dụng BDT cô si dạng "Shinra" ta có , đặt tử số = S
\(S=\sqrt[3]{z}+\sqrt[3]{y}+\sqrt[3]{x}\ge3\sqrt[3]{\sqrt[3]{xyz}}\)
có xyz=1 vậy \(3\sqrt[3]{\sqrt[3]{xyz}}=3\)
suy ra \(S\ge3\) ( ngược dấu loại )
cách 2 áp dụng BDT cosi dạng đặc biệt " Gedou rinne Tensei " ta được
lưu ý " Gedou Rinne Tensei" chỉ dùng lúc nguy cấp + tán gái + thể hiện và chỉ lừa được những thằng ngu
không nên dùng trc mặt thầy cô giáo :) .
\(\sqrt[3]{x.1.1}\le\frac{\left(x+2\right)}{3}\)
tương tự vs các BDt còn lại và đặt tử số = S ta được
\(S\le\frac{\left(x+2+y+2+z+2\right)}{3}=\frac{\left(x+y+z+6\right)}{3}=3\)
thay \(S\le3\) vào biểu thức ta được
\(Q\le\frac{3}{3}=1\)
vây Max Q là 1 dấu = xảy ra khi x=y=z=1
Đệch, nói luôn côsi 3 số cho r
Cái này ae nào ko hiểu msg tui, tui dùng điểm rơi giải đc r, dễ hiểu hơn
\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{z+y+1+x+z+1+x+y-2}=\frac{x+y+z}{2x+2y+2z}=\frac{1}{2}.\)
\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2x=z+y+1\\2y=x+z+1\\2z=x+y-2\end{cases}\Rightarrow}\)
Đến đay thì chịu
Hình như thiếu dữ kiện