Cho vuông tại A. Biết AB = 5cm, AC = 12 cm
a)Tính BC.
b)Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Chứng tỏ BCD cân.
c)Gọi K và H lần lượt là trung điểm của CD và CB. Chứng minh: KH//BD.
d)Gọi G là giao điểm của BK và DH. Tính GA.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC cân tại A thì AB=AC tại sao đề bài là AB<AC là sao ????????????????
a: AC=8cm
Xét ΔBAC có AB<AC
nên \(\widehat{B}>\widehat{C}\)
b: Xét ΔCBD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
c: Xét ΔCDB có
CA là đường trung tuyến
BM là đường trung tuyến
CA cắt BM tại G
Do đó: G là trọng tâm
=>AG=1/3AC=8/3(cm)
a: BC=15cm
b: Xét ΔABM có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABM cân tại B
c: Xét tứ giác ABNC có
K là trung điểm của BC
K là trung điểm của AN
Do đó: ABNC là hình bình hành
Suy ra: CN=AB
mà AB=BM
nên CN=BM
a)
Xét △ABC vuông tại A có :
BC2=AB2+AC2(định lý py-ta-go)
⇒102=62+AC2
⇒100=36+AC2
⇒AC2=100-36=64
⇒AC=8cm
Xét △ABC có AC>AB(8>6)
⇒∠B>∠C(quan hệ giữa góc và cạnh đối diện)
a, Xét ΔABC vuông tại A có :
BC2 = AB2 + AC2 ( Định lí Pytago)
=> BC2 = 52 + 122
=> BC2 = 169
=> BC = 13 (cm)
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: Xét ΔBCD có
BA là đường cao
BA là đường trung tuyến
Do đó: ΔBCD cân tại B