K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)

Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)

14 tháng 12 2021

Câu c đâu chị

30 tháng 6 2018

a,\(10^n+18n-1\)

\(=99...9+18n\)(n-1 chữ số 9)

Mà \(99..9⋮9;18n⋮9\)lại có \(999..9⋮3;18n⋮3\)

\(\Rightarrow999..9+18n⋮\left(3.9\right)\)

\(\Rightarrow10^n+18n-1⋮27\)

13 tháng 8 2018

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

7 tháng 12 2015

Câu hỏi tương tự          

6 tháng 3 2017

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Chứng  minh   J = 10 n + 18 n − 1  chia hết cho 9.

Bước 2. Chứng minh  J = 10 n + 18 n − 1  chia hết cho 3.

Ta có:

J = 10 n + 18 n − 1 = 10 n − 1 + 18 n ⇒ J = 99...9 + 18 n ⇒ J = 9 11...1 + 2 n  

=> J chia hết cho 9.

+) Chứng minh  11...1 + 2 n ⋮ 3 .

Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.

Số 11...1 gồm n chữ số 1. Khi đó, 1 + 1 + ... + 1 = n .

Suy ra 11...1 và n có cùng số dư trong phép chia cho 3.

=> 11...1-n chia hết cho 3.

=> (11...1+2n) ⋮ 3

⇒ J ⋮ 27

1 tháng 11 2018

12 tháng 11 2015

C = 10n + 18n -28

+với n =1 => C =10+18 -28 =0 chia  hết cho 9

+ Giả sử C chia hết cho 9  với  n-1

  => C =10n-1 + 18(n-1) -28 chia hết cho 9

+ Ta chứng minh C  chia hết cho 9 đúng với n

C= [10n +18n -28 = 10.10n-1 +18(n -1).10  -280 ] +(162n +432)

  =10[10n-1 + 18(n-1) -28 ] +9(18n+48) chia hết cho 9

=> dpcm