Cho 2 số nguyên \(x;y>1\) thỏa mãn điều kiện \(2x^2-1=y^3\). Chứng minh rằng x chia hết cho 3.
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán, em cám ơn nhiều lắm ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để x là số nguyên thì 3a - 2 ϵ Ư(2) = {1; -1; 2; -2}.
Lập bảng
3a - 2 | 1 | -1 | 2 | -2 |
a | 1 | \(\dfrac{1}{3}\) (loại) | \(\dfrac{4}{3}\) (loại) | 0 |
a) Để x là số nguyên dương thì 3a - 2 phải là số nguyên dương. Vậy để x là số nguyên dương thì a = 1.
b) Để x là số nguyên âm thì 3a - 2 phải là số nguyên âm. Vậy để x là số nguyên âm thì a = 0.
Ta có:
\(\dfrac{x+5}{x-2}=\dfrac{x-2+7}{x-2}=\dfrac{x-2}{x-2}+\dfrac{7}{x-2}=1+\dfrac{7}{x-2}\)
Để \(\dfrac{x+5}{x-2}\) là một số nguyên thì \(\dfrac{7}{x-2}\) phải nguyên
\(\Rightarrow7\) ⋮ \(x-2\)
\(\Rightarrow x-2\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{3;1;9;-5\right\}\)
a: Để 5/x+3 là số nguyên thì \(x+3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-2;-4;2;-8\right\}\)
b: Để \(\dfrac{x^2}{x+1}\) là số nguyên thì \(x^2-1+1⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1\right\}\)
hay \(x\in\left\{0;-2\right\}\)
A là số nguyên
=>x-2+3 chia hết cho x-2
=>x-2 thuộc {1;-1;3;-3}
=>x thuộc {3;1;5;-1}
Ta có: \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}\)
Có giá trị nguyên khi: \(x-2+3\) ⋮ \(x-2\)
Hay: \(x-2\) ⋮ \(-3\)
\(\Rightarrow x-2\inƯ\left(-3\right)\)
Mà: \(Ư\left(-3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow x\in\left\{3;5;1;-1\right\}\)
Do \(2x^2-1\) luôn lẻ \(\Rightarrow y^3\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k-1\) với \(k>1\)
\(2x^2-1=\left(2k-1\right)^3=8k^3-12k^2+6k-1\)
\(\Rightarrow x^2=4k^3-6k^2+3k=k\left(4k^2-6k+3\right)\)
- Nếu \(k⋮3\Rightarrow x^2⋮3\Rightarrow x⋮3\)
- Nếu \(k⋮̸3\), gọi \(d=ƯC\left(4k^2-6k+3;k\right)\) với \(d\ne3\)
\(\Rightarrow4k^2-6k+3-k\left(4k-6\right)⋮d\)
\(\Rightarrow3⋮d\Rightarrow d=1\)
\(\Rightarrow4k^2-6k+3\) và \(k\) nguyên tố cùng nhau
Mà \(k\left(4k^2-6k+3\right)=x^2\Rightarrow\left\{{}\begin{matrix}k^2=m^2\\4k^2-6k+3=n^2\end{matrix}\right.\)
Xét \(4k^2-6k+3=n^2\Rightarrow16k^2-24k+12=\left(2n\right)^2\)
\(\Rightarrow\left(4k-3\right)^2+3=\left(2n\right)^2\)
\(\Rightarrow\left(2n-4k+3\right)\left(2n+4k-3\right)=3\)
Giải pt ước số cơ bản này ta được nghiệm nguyên dương duy nhất \(k=1\) (không thỏa mãn \(k>1\))
Vậy \(x⋮3\)
Em cám ơn thầy Lâm ạ!