Tính nhanh:
A=\(\frac{1991\cdot1993-1}{1990+1991\cdot1992}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1989.1990+3978):(1992.1991−3984)
=[1989.(1990+2)]:[1992(1991−2)]=(1989.1992):(1992.1989)=1=[1989.(1990+2)]:[1992(1991−2)]=(1989.1992):(1992.1989)=1
\(\left(1989.1990+3978\right):\left(1992.1991-3984\right)\)
\(=\left[1989.\left(1990+2\right)\right]:\left[1992\left(1991-2\right)\right]=\left(1989.1992\right):\left(1992.1989\right)=1\)
\(\frac{1991x1993-1}{1990+1991x1992}=\frac{1991x\left(1992+1\right)-1}{1990+1991x1992}=\frac{1991x1992+1991-1}{1990+1991x1992}=\frac{1991x1992+1990}{1990+1991x1992}=1\)
1991*1993-1/1990+1991*1992
=1991*(1992+1)-1/1990+1991*1992
=1991*1992+1991*1-1/1990+1991*1992
=1990/1990
=1
1991*(1993-1)-1/1990+1991*1992
= 1991*1992-1/1990+1991*1992
= 1990/1990
= 1
Đặt \(A=\frac{10^{1990}+1}{10^{1991}+1}\)
\(\Rightarrow10A=\frac{10\cdot(10^{1990}+1)}{10^{1991}+1}\)
\(=\frac{10^{1991}+10}{10^{1991}+1}=\frac{10^{1991}+1+9}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)
Đặt \(B=\frac{10^{1991}+1}{10^{1992}+1}\)
\(\Rightarrow10B=\frac{10\cdot(10^{1991}+1)}{10^{1992}+1}=\frac{10^{1992}+10}{10^{1992}+1}=\frac{10^{1992}+1+9}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)
Tự so sánh được rồi -_-
Ta có:
\(A=\left(\frac{10^{1990}+1}{10^{1991}+1}\right).\frac{10}{10}=\frac{10^{1991}+10}{10^{1992}+10}\)
Mình làm bằng cách tính phần bù:
Ta có:
\(1-A=1-\frac{10^{1991}+10}{10^{1992}+10}=\frac{10^{1992}+10}{10^{1992}+10}-\frac{10^{1991}+10}{10^{1992}+10}=\frac{10^{1992}-10^{1991}}{10^{1992}+10}\)
\(1-B=1-\frac{10^{1991}+1}{10^{1992}+1}=\frac{10^{1992}+1}{10^{1992}+1}-\frac{10^{1991}+1}{10^{1992}+1}=\frac{10^{1992}-10^{1991}}{10^{1992}+1}\)
Vì \(\frac{10^{1992}-10^{1991}}{10^{1992}+10}<\frac{10^{1992}-10^{1991}}{10^{1992}+1}\)nên\(\frac{10^{1991}+10}{10^{1992}+10}>\frac{10^{1991}+1}{10^{1992}+1}\)
\(\Rightarrow A>B\)
Vì\(\frac{10^{1991}+1}{10^{1992}+1}\)<1
Nên\(\frac{10^{1991}+1}{10^{1992}+1}\)<\(\frac{10^{1991}+1+9}{10^{1992}+1+9}\)
Ta có: \(\frac{10^{1991}+1+9}{10^{1992}+1+9}\)=\(\frac{10^{1991}+10}{10^{1992}+10}\)=\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\frac{10^{1990}+1}{10^{1991}+1}\)
=>\(\frac{10^{1991}+1}{10^{1992}+1}\)<\(\frac{10^{1990}+1}{10^{1991}+1}\)
Vậy: B<A
\(A=\frac{10^{1990}+1}{10^{1991}+1}vàB=\frac{10^{1991}+1}{10^{1992}+1}\)
\(B=\frac{10^{1991}+1}{10^{1992}+1}<1\)
\(\Rightarrow\frac{10^{1991}+1}{10^{1992}+1}<\frac{10^{1991}+1+9}{10^{1992}+1+9}\)
\(\Rightarrow\frac{10^{1991}+1}{10^{1992}+1}<\frac{10^{1991}+10}{10^{1992}+10}\)
\(\Rightarrow\frac{10^{1991}+1}{10^{1992}+1}<\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)
\(\Rightarrow\frac{10^{1991}+1}{10^{1992}+1}<\frac{10^{1990}+1}{10^{1991}+1}=A\)
\(\Rightarrow A>B\)
\(A=\frac{10^{1990}+1}{10^{1991}+1}\Rightarrow10A=\frac{10^{1991}+1+9}{10^{1991}+1}\Rightarrow10A=1+\frac{9}{10^{1991}+1}\)
\(B=\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow10B=\frac{10^{1992}+1+9}{10^{1992}+1}\Rightarrow10B=1+\frac{9}{10^{1992}+1}\)
=> 10A > 10B
=> A>B
Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)
=> \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)
=> \(B< \frac{10^{1991}+10}{10^{1992}+10}\)
=> \(B< \frac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)
=> \(B< \frac{10^{1990}+1}{10^{1991}+1}=A\)
=> B < A
Ta có :
A = \(\frac{10^{1990}+1}{10^{1991}+1}\)
10A = \(\frac{10.\left(10^{1990}+1\right)}{10^{1991}+1}\)
10A = \(\frac{10^{1991}+10}{10^{1991}+1}\)
10A = \(\frac{10^{1991}+1+9}{10^{1991}+1}\)
10A = \(1+\frac{9}{10^{1991}+1}\left(1\right)\)
Ta lại có :
B = \(\frac{10^{1991}+1}{10^{1992}+1}\)
10B = \(\frac{10.\left(10^{1991}+1\right)}{10^{1992}+1}\)
10B = \(\frac{10^{1992}+10}{10^{1992}+1}\)
10B = \(\frac{10^{1992}+1+9}{10^{1992}+1}\)
10B = \(1+\frac{9}{10^{1992}+1}\left(2\right)\)
Từ \(\left(1\right)va\left(2\right)\)
Ta có :\(1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)
\(\Rightarrow\)10A > 10B
\(\Rightarrow\)A > B
MIK CHỊU CHƯA HỌC
=1/1990
mình chả biết đúng hay sai nữa