Cho △ ABC vuông tại A. Các đường trung trực ứng với AB,AC cắt nhau tại O. Chứng minh O là trung điểm của BC
Mọi người giúp mình với ak. Mình nghĩ mãi mà ko ra. Cảm ơn nhiều ak!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi G, F lần lượt là chân đường vuông góc từ O kẻ xuống AB và AC
Ta có: O nằm trên đường trung trực của AB(gt)
mà OG⊥AB(gt)
nên G là trung điểm của AB
Ta có: O nằm trên đường trung trực của AC(gt)
mà OF⊥AC(gt)
nên F là trung điểm của AC
Ta có: AG=AB2AG=AB2(G là trung điểm của AB)
AF=AC2AF=AC2(F là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AG=AF
Xét ΔAGO vuông tại G và ΔAFO vuông tại F có
AO chung
AG=AF(cmt)
Do đó: ΔAGO=ΔAFO(cạnh huyền-cạnh góc vuông)
Suy ra: ˆGAO=ˆFAOGAO^=FAO^(hai góc tương ứng)
hay ˆBAO=ˆCAOBAO^=CAO^
mà tia AO nằm giữa hai tia AB,AC
nên AO là tia phân giác của ˆBACBAC^(đpcm)
c) Xét ΔAOB và ΔAOC có
AB=AC(ΔABC cân tại A)
ˆBAO=ˆCAOBAO^=CAO^(cmt)
AO chung
Do đó: ΔAOB=ΔAOC(c-g-c)
Suy ra: OB=OC(hai cạnh tương ứng)
Ta có: ˆABC+ˆKBC=ˆABKABC^+KBC^=ABK^(tia BC nằm giữa hai tia BA,BK)
nên ˆABC+ˆKBC=900ABC^+KBC^=900(1)
Ta có: ˆACB+ˆKCB=ˆACKACB^+KCB^=ACK^(tia CB nằm giữa hai tia CA,CK)
nên ˆACB+ˆKCB=900ACB^+KCB^=900(2)
Từ (1) và (2) suy ra ˆABC+ˆKBC=ˆACB+ˆKCBABC^+KBC^=ACB^+KCB^
mà ˆABC=ˆACBABC^=ACB^(hai góc ở đáy của ΔABC cân tại A)
nên ˆKBC=ˆKCBKBC^=KCB^
Xét ΔKBC có ˆKBC=ˆKCBKBC^=KCB^(cmt)
nên ΔKBC cân tại K(Định lí đảo của tam giác cân)
Suy ra: KB=KC(hai cạnh bên)
Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
ˆEBC=ˆDCBEBC^=DCB^(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBEC=ΔCDB(cạnh huyền-góc nhọn)
Suy ra: ˆBCE=ˆCBDBCE^=CBD^(hai góc tương ứng)
hay ˆHBC=ˆHCBHBC^=HCB^
Xét ΔHBC có ˆHBC=ˆHCBHBC^=HCB^(cmt)
nên ΔHBC cân tại H(Định lí đảo của tam giác cân)
Suy ra: HB=HC(hai cạnh bên)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: OB=OC(cmt)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: HB=HC(cmt)
nên H nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)
Ta có: KB=KC(cmt)
nên K nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(6)
Từ (3), (4), (5) và (6) suy ra A,O,H,K thẳng hàng(đpcm)
-Gọi M, N là t/đ của AB,AC \(\Rightarrow\)MO,NO là các đường trung trực của △ABC.
-MO là trung trực của đoạn AB \(\Rightarrow AO=BO;\widehat{AOB}=180^0-2\widehat{OAB}\)
(t/c trung trực)
-NO là trung trực của đoạn AC \(\Rightarrow AO=CO;\widehat{AOC}=180^0-2\widehat{OAC}\)
(t/c trung trực)
\(\Rightarrow\widehat{AOB}+\widehat{AOC}=180^0-2\widehat{OAB}+180^0-2\widehat{OAC}=360^0-2.90^0=180^0\)
\(\Rightarrow\widehat{BOC}=180^0\) nên B,O,C thẳng hàng
Mà \(AO=BO=CO\Rightarrow\)O là trung điểm BC.