Chứng minh a/b<1 thì a/b<a+c/b+c
a/b>1 thì a.b>a+C/b+c (b>0; C thuộc N*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)
Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)
b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)
Giả sử a<b, ta đặt b=a+k(k>0)
Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)
Chứng minh tương tự với a>b
Bài 1:
a) + Nếu a/b > 1 thì a/b > b/b => a > b
+ Nếu a > b thì a/b > b/b => a/b > 1 (đpcm)
b) + Nếu a/b < 1 thì a/b < b/b => a < b
+ Nếu a < b thì a/b < b/b => a/b < 1 (đpcm)
Bài 2:
Do \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}.\frac{d}{c}< \frac{c}{d}.\frac{d}{c}\)
=> \(\frac{a.d}{b.c}< 1\Rightarrow a.d< b.c\left(đpcm\right)\)
bai2
vi a/b > c/d
=>ad/bd >cd/bd
và ad/bd , cd/bd có mẫu chung là bd
<=>ad>cd