5 < x < y < 10
cái này chỉ lấy 2 số thui ( không phải là số bất kì đâu vd : 6 ; 7 ;8 ;9 , chỉ chọn 2 số duy nhất để thích hợp thui )
ai làm đc chỉ với nha !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Giả sử tồn tại 7 số không thỏa mãn điều kiện đề bài. Không mất tính quát, ta coi rằng \(x_1< x_2< ...< x_7\)
Do 7 số đã cho là các số nguyên dương nên :
\(x_2\ge x_1+1\)
\(x_3+x_1\ge4x_2\ge4\left(x_1+1\right)\Rightarrow x_3\ge3x_1+4\)
\(x_4+x_1\ge4x_3\ge4\left(3x_1+4\right)\Rightarrow x_4\ge11x_1+16\)
\(x_5+x_1\ge4x_4\ge4\left(11x_1+16\right)\Rightarrow x_5\ge43x_1+64\)
\(x_6+x_1\ge4x_5\ge4\left(43x_1+64\right)\Rightarrow x_6\ge171x_1+256\)
\(x_7+x_1\ge4x_6\ge4\left(171x_1+256\right)\Rightarrow x_7\ge683x_1+1024\)
Do x1 là số nguyên dương nên \(x_1\ge1\Rightarrow x_7\ge683+1024=1707>1706\) (Vô lý)
Vậy nên phải tồn tại bộ ba số thỏa mãn yêu cầu của đề bài.
+) Nếu a2 < 0 => a1 < 0 => tổng a1 + a2 < 0 trái với giả thiết
=> a2 > 0 => 0< a2<a3<a4<a5<a6
Mà a1.a2.a3.a4.a5.a6 <0 => a1 < 0
Vì a1 + a2 > 0 => |a1| < |a2|
=> |a1| < |a2| < |a3| < |a4| < |a5| < |a6|
=>6. |a1| < |a1| + |a2| + |a3|+|a4|+|a5|+|a6| = 21 => |a1| < 3,5 Mà |a1| > 0 và nguyên
=> |a1| = 1 hoặc 2 hoặc 3
+) Nếu |a1| = 1 => a1 = -1 và |a2| + |a3|+|a4|+|a5|+|a6| = 21 - 1 = 20
Mà |a2| + |a3|+|a4|+|a5|+|a6| = a2 + a3 + a4 + a5 + a6
=> a1 + a2 + a3 + a4 + a5 + a6. = -1 + 20 = 19
+) Nếu |a1| = 2 => a1 = - 2 và |a2| + |a3|+|a4|+|a5|+|a6| = 19
=> a1 + a2 + a3 + a4 + a5 + a6. = -2 + 19 = 17
+) Nếu |a1| = 3 => a1 = - 3 và |a2| + |a3|+|a4|+|a5|+|a6| = 18
=> a1 + a2 + a3 + a4 + a5 + a6. = - 3 + 18 = 15
Vậy.................
ĐÁP SỐ: a1 + a2 + a3 + a4 + a5 + a6 = 19
LỜI GIẢI:
Nhận thấy: |a1| + |a2| + |a3|+|a4|+|a5|+|a6|=21 = 1+2+3+4+5+6 suy ra { |a1|;|a6|} = {1;6}
Do a1.a2.a3.a4.a5.a6 <0 suy ra số lượng phần tử số nguyên âm là 1, hoặc 3, hoặc 5 phần tử.
Từ giả thiết: tổng của hai số bất kì trong các số đó là số dương ta suy ra 2 điều:
(1) Không có nhiều hơn 1 số nguyên âm.
(2) Giá trị tuyệt đối của số nguyên âm đó là nhỏ nhất.
Vậy ta tìm được giá trị các số nguyên phù hợp:
a1 =-1
a2 = 2
a3 = 3
a4 = 4
a5 = 5
a6 = 6
KẾT LUẬN: a1 + a2 + a3 + a4 + a5 + a6 = 19.
Bạn thử giải toán trên trang này xem nhé
a) Vì x chia hết cho 2 nên tận cùng là 0, 2,4,6,8
Mà 30 < x < 50
=> x={32;34;36;38;40;42;44;46;48}
b)Vì x chia hết cho cả 2,5 nên x có tân cùng là 0
Mà: 10<y<90
=>x={20;30;40;50;60;70;80}
5<6<7<10
Bài này dễ mà
Còn nhiều trường hợp nữa