K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bìa này đâu cần : \(\frac{a}{b}=\frac{c}{d}\)

Ta chứng minh ngược :

 \(\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\left(3c+2016b\right)\left(c-2d\right)=\left(3c+2016d\right)\left(a-2b\right)\)

\(\Rightarrow3ac-4032bd=3ac-4032bd\)( hiển nhiên đúng )

\(\Rightarrow\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)( đúng )

12 tháng 8 2016

AB = CD và thành 3a + 2016 + ab =3434

= 3c + 3434 +cd= 4354

ds ________________________

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)

\(\Rightarrow ac-ad=ac-cd\)

\(\Rightarrow a\left(c-d\right)=c\left(a-d\right)\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\left(đpcm\right)\)

12 tháng 8 2016

bạn dùng phương pháp suy ngươc nha . mình thử bạn xem bạn có làm được ko.

mình suy từ kết quả lên đề bài cho nha

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)

\(\Rightarrow bd-ad=bd-bc\)

\(\Rightarrow d\left(b-a\right)=b\left(d-c\right)\)

\(\Rightarrow\frac{b-a}{b}=\frac{d-c}{d}\left(đpcm\right)\)

12 tháng 8 2016

Do a/b = c/d

=> 1 - a/b = 1 - c/d

=> b/b - a/b = d/d - c/d

=> b - a/b = d - c/d

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}\)

Ta có : 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{c+d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2+b^2}{c^2+d^2}\)

24 tháng 8 2016

\(\frac{a}{b}=\frac{c}{d}\)=\(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(2)

                                       =>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(3)

                                      =>\(\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(4)

=>Từ (1),(2),(3),(4)=>\(\frac{a}{b}=\frac{a^2-b^2}{c^2-d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)

24 tháng 8 2016

chứng minh này chị ngu lắm em

24 tháng 8 2016

TỈ lệ cần chứng minh 

<br class="Apple-interchange-newline"><div id="inner-editor"></div>2015a2016b2015c2016d =2016a+2017b2016c+2017d 

Vì ab =cd ac =bd  = 2015a2015c =2016b2016d =2016a2016c =2017b2017d 

Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{a}{c}\)=\(\frac{2015a-2016b}{2015c-2016d}\)=\(\frac{2016a+2017b}{2016c+2017d}\)

25 tháng 4 2018

tham khảo bài tương tự này :  

Câu hỏi của so yeoung cheing - Toán lớp 7 - Học toán với OnlineMath

6 tháng 11 2016

Bài 2:

Áp dụng Bdt Cauchy-Schwarz dạng engel, ta có

\(VT\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)

Mà theo Bđt cosi 

\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)

\(=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)

27 tháng 11 2016

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{bc}{a+3b+2c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{c}{2}\right)\)

\(\frac{ca}{b+3c+2a}\le\frac{1}{9}\left(\frac{ca}{b+c}+\frac{ca}{c+a}+\frac{a}{2}\right)\)

\(\frac{ab}{c+3a+2b}\le\frac{1}{9}\left(\frac{ab}{c+a}+\frac{ab}{a+b}+\frac{b}{2}\right)\)

Cộng theo vế của 3 BĐT ta có:

\(VT\le\frac{1}{9}\left(\frac{a+b+c}{2}+\frac{ca+ab}{a+c}+\frac{ab+bc}{a+b}+\frac{bc+ca}{b+c}\right)\)

\(=\frac{1}{9}\left(a+b+c+\frac{a+b+c}{2}\right)=1\)

Dấu "=" khi a=b=c=2

27 tháng 11 2016

chờ tí mk lm nốt btvn hẵng