K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2015

gọi d = ƯCLN(a; b) 

=> a chia hết cho d; b chia hết cho d

=> (a+b)  chia hết cho d 

=> d = ƯC(a +b ;b) => ƯCLN(a+b; b)  d

Mà a/b chưa tối giản => d > 1 

=> ƯCLN(a+b; b)  d > 1

=> a+b/ b chưa tối giản

22 tháng 2 2018

a) Vì \(\frac{a}{b}\)là 1 ps chưa tối giản

=> Ta có công thức: \(\hept{\begin{cases}a=kd\\b=hd\end{cases}\left(\left(a;b\right);\left(k;h\right)=d=1\right)}\)

=> \(\frac{a}{a-b}=\frac{kd}{kd-hd}=\frac{kd}{\left(k-h\right)d}\)chưa là phân số tối giản ( có thể rút gọn dc nx)

b) \(\frac{2a}{a-2b}=\frac{2kd}{kd-2hd}=\frac{2kd}{\left(k-2h\right)d}\)chưa là phân số tối giản (có thể rút gọn dc nx)

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

3 tháng 3 2015

cả cách làm nữa nhé

 

12 tháng 4 2016

\(\frac{a+b}{b}\)=\(\frac{a}{b}+\frac{b}{b}=\frac{a}{b}+1\)

1 là ps tối giản, \(\frac{a}{b}\)à ps chưa tối giản 

suy ra \(\frac{a+b}{b}\) là ps tối giản

23 tháng 3 2015

a/a-b = 1-a/b 

maf ấ/b chưa tối giản => a:m/b:m = a/b

12 tháng 2 2018

vì đầu bài bảo nó chưa tối giản

12 tháng 2 2018

\(\frac{a}{b}\) là phân số chưa tối giản

\(\Leftrightarrow\hept{\begin{cases}a=k.a_1\\b=k.b_1\end{cases}}\) \(\left[ƯCLN\left(a;b\right)=k;ƯCLN\left(a_1;b_1\right)=1\right]\)

\(\frac{2a}{a-2b}=\frac{2.k.a_1}{k.a_1-2.k.b_1}=\frac{2k.a_1}{k\left(a_1-2.b_1\right)}\) chưa tối giản

=> đpcm

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

19 tháng 3 2018

Gọi D là UCLN (a, b). Ta kí hiệu là (a, b). Áp dụng tính chất: P/s tối giản là p/s có UCLN = 1.

Ta có: 

(a, b) = D = 1

\(\Rightarrow\frac{a}{b}=1\) 

\(\Rightarrow\frac{2a+b}{a\left(a+b\right)}=\frac{2a+b}{a}+\frac{2a+b}{a+b}\). Mà (a, b) = 1

\(\Rightarrow\frac{2a+b}{a}+\frac{2a+b}{a+b}=\frac{2a+b}{D}+\frac{2a+b}{D+b}=\frac{2a+b}{1}+\frac{2a+b}{1+b}=\frac{2a+b}{1\left(1+b\right)}=1^{\left(đpcm\right)}\)

19 tháng 3 2018

Bạn bổ sung thêm: \(\frac{2a+b}{1\left(1+b\right)}=\frac{2a+b}{1+b}=\frac{2a}{1}=\frac{2:a}{1:a}=1^{\left(đpcm\right)}\)bổ sung thế này cho nó chắc nhé