Cho tam giác ABC , góc A = 90 độ . Kẻ AH vuông góc với BC tại H
a) Tính góc B + C ?
b) Chứng minh : góc ABH = góc HAC , góc HAB = góc HCA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{HAB}+\widehat{B}=90^0\)(ΔAHB vuông tại H)
\(\widehat{C}+\widehat{B}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{HAB}=\widehat{HCA}\)
hình e tự vẽ nhé
a) Xét tam giác BHA vuông tại H có
góc B + góc HAB = 90 độ ( hai góc phụ nhau)
40 độ + góc HAB = 90 độ
=> góc HAB = 50 độ
mà góc HAB + góc HAC = 90 độ ( tam giác ABC có góc A = 90 độ)
Ta lại có góc HAC + Góc C = 90 độ ( hai góc phụ nhau )
=> góc HAB = góc C = 50 độ
a: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
\(\Leftrightarrow\widehat{C}=90^0-40^0=50^0\)
a, Vì BAC = 90o
=> BA ⊥ AC
Mà HD ⊥ AB (gt)
=> AC // HD (từ vuông góc đến song song)
b, Vì AC // HD (cmt) => BHD = HCA = 30o
Vì AH ⊥ BC (gt) => AHB = 90o
Xét △BDH vuông tại D có: DBH + BHD = 90o (tổng 3 góc trong tam giác)
=> DBH + 30o = 90o
=> DBH = 60o
Xét △BAH vuông tại H có: BAH + ABH = 90o
=> BAH + 60o = 90o
=> BAH = 30o
a)Trong tam giác ABC có: góc BAC + góc ABC + góc ACB = 180 độ => góc ABC + góc ACB + 90 độ = 180 độ => góc ABC + góc ACB = 90 độ
b) 1)Trong tam AHB có: góc ABH + góc HAB + góc AHB = 180 độ => góc ABH + góc HAB + 90 độ = 180 độ
=> góc ABH = 180 độ - 90 độ - góc HAB => góc ABH = 90 độ - góc HAB
Mặt khác: góc HAC + góc HAB = góc BAC = 90 độ => góc HAC = 90 độ - góc HAB
=> góc ABH = góc HAC(= 90 độ - góc HAB)
2) Trong tam AHC có: góc ACH + góc HAC + góc AHC = 180 độ => góc ACH + góc HAC + 90 độ = 180 độ
=> góc ACH = 180 độ - 90 độ - góc HAC => góc ACH = 90 độ - góc HAC
Mặt khác: góc HAC + góc HAB = góc BAC = 90 độ => góc HAB = 90 độ - góc HAC
=> góc ACH = góc HAB(= 90 độ - góc HAC)