Gia trị của A = 333333 + 555555 + 777777 có là số chính phương không ? Vì sao ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL
a, 100005175327
b, 148904438
c, 10746660
HT
Mình mất 5 phút để giải, bạn mất 1 giây để t.i.c.k, nhớ t.i.c.k mình nhá
Số dư của một số chính phương khi chia cho 4 chỉ có thể là 0 (khi số đó là số chính phương chẵn) hoặc 11 (khi số đó là số chính phương lẻ).Thật vậy! Gọi số chính phương đó là A=n2
Xét các trường hợp:
n=2k (k∈N) ⇒A=4k2, chia hết cho 4 (chia 4 dư 0)
n=2k+1 (k∈N) ⇒A=4k2+4k+1=4k(k+1)+1, chia 4 dư 1
--------------------------------
Ta có: 333; 555; 777 là các số lẻ nên:
333333=4a+1 (a∈N∗)
555555=4b+1 (b∈N∗)
777777=4c+1 (c∈N∗)
Do đó C=4a+1+4b+1+4c+1=4(a+b+c)+3
Suy ra C chia 4 dư 3.
Vậy C không phải là số chính phương. (vì số dư của một số chính phương khi chia cho 4 chỉ có thể là 0 hoặc 1)
Bạn Uzumaki Naturo giải sai rồi. Sai thứ nhất : Số lẻ thì có dạng 4k + 1 ; lấy ví dụ 11 = 4k + 3. Sai thứ hai 555 mũ 555 bằng 4b + 1 ; số 555 mũ 555 chia cho 4 dư -1 mới đúng. Như vậy số A chia cho 4 dư 1 + (-1) + 1 = 1 vẫn có thể là số chính phương mà.
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
Ta có: Đặt a = 2013
Khi đó, ta có: A = a(a + 2)(a + 4)(a + 6) + 16
A = [a(a + 6)][(a + 2)(a + 4)] + 16
A = (a2 + 6a)(a2 + 6a + 8) + 16
A = (a2 + 6a) + 8(a2 + 6a) + 16
A = (a2 + 6a + 4)2
=> A là số chính phương
=> bình phương của 20132 + 6.2013 + 4 = 4064251
(biến đổi trực tiếp luôn cũng được, không cần phải đặt)
a)
tổng từ 1 đến 101 là
\(\frac{101\left(101+1\right)}{2}=5151\)
chia hết cho 3
=>A chia hết cho 3
=>A là hợp sô
b)
c) Dể A chia hết cho 35 thì A chia hết cho 5 và 7
MÀ A ko chia hết cho 5 vì tận cùng là 1
=>A ko chia hết cho 35
Ta có: 2 + 4 + 6 +… + ( 2n ) = ( 2n + 2 ) . n : 2 = n ( n+1 )
Mà n . n < n ( n+1 ) < ( n + 1 )( n + 1 ) ⇒ n 2 < n ( n + 1 ) < n + 1 2
n 2 và n + 1 2 là số chính phương liên tiếp nên n ( n + 1 ) không thể là số chính phương. Ta có điều cần chứng minh.Ta có: 2 + 4 + 6 +… + ( 2n ) = ( 2n + 2 ) . n : 2 = n ( n+1 )
Mà n . n < n ( n+1 ) < ( n + 1 )( n + 1 ) ⇒ n 2 < n ( n + 1 ) < n + 1 2
n 2 và n + 1 2 là số chính phương liên tiếp nên n ( n + 1 ) không thể là số chính phương. Ta có điều cần chứng minh.