K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

a) Có tất cả : ( 100 - 2 ) : 2 +1 = 50 ( số hạng x )

50 x X + ( 100 + 2 ) x 50 : 2 = 50 x X  + 2550 = 2650

50 x X = 2650 - 2550 

50 x X =100

X = 100 : 50 

X = 20 

b) câu này chắc phải giải cách lớp 6 thôi em à đc ko em ?

nhấn đúng cho chị nhá

từ 2 đến 100 có số số hạng là ; 100-2 =98 rồi chia 2 +1=50

tổng từ 2 đến 100 là 50:2 rồi nhân 2+100=2550

vì có 50 số hạng nên có 50 lần x

ta có:50x +2550=2650

        50x=2650-2550

        50x=100

        x=100:50

       x=2

Vậy x= 2

23 tháng 2 2022

a/

\(\left(x-1\right)^2-\left(x+1\right)^2=2x-6\\ x^2-2x+1-\left(x^2+2x+1\right)=2x-6\\ \)

\(\Leftrightarrow x^2-2x+1-x^2-2x-1-2x+6=0\)

\(\Leftrightarrow6-6x=0\)

=> x=1

Làm có tâm ghê :)

24 tháng 3 2020

a)Tách 3=1+1+1 rồi phân phát chúng cho 3 phân số được là

\(\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{3}=0\)<=>(x+10)\(\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{3}\right)=0\)

Dễ rồi

bNguyễn Thị Mai Huyền xem có câu hỏi giống đấy

24 tháng 3 2020

Hỏi đáp Toán

3 tháng 9 2018

\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

7 tháng 7 2020

\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)

\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)

\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)

\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)

Thay x = 79 vào biểu thức trên , ta có

\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)

\(=0+79+15\)

\(=94\)

Vậy \(P(x)=94\)khi x = 79

\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)

\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)

\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)

\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)

Thay x = 9 vào biểu thức trên , ta có

\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)

\(=0-9+10\)

\(=1\)

Vậy \(Q(x)=1\)khi x = 9

\(c.R(x)=x^4-17x^3+17x^2-17x+20\)

\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)

\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)

\(=(x-16)(x^3-x^2+x)-x+20\)

Thay x = 16 vào biểu thức trên , ta có

\(R(16)=(16-16)(16^3-16^2+16)-16+20\)

\(=0-16+20\)

\(=4\)

Vậy \(R(x)=4\)khi x = 16

\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)

\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)

\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)

\(=(x-12)(x^9-x^8+....+x)-x+10\)

Thay x = 12 vào biểu thức trên , ta có

\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)

\(=0-12+10\)

\(=-2\)

Vậy \(S(x)=-2\)khi x = 12

Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện

Chúc bạn học tốt , nhớ kết bạn với mình

18 tháng 11 2018

12+x/43-x=2/3

(12+x)*3=(43-x)*2

36+3x=86-2x

3x+2x=86-36

5x=50 suy ra: x=50/5=10

                 Vậy x=10

đúng 3 cai nha

7 tháng 2 2021

ĐKXĐ : \(xy\ne0\) 

- Từ PT ( II ) ta được : \(\dfrac{x+y}{xy}=\dfrac{7}{xy}=\dfrac{7}{12}\)

\(\Rightarrow xy=12\)

- Hệ phương trình có nghiệm là nghiệm của phương trình :

\(x^2-7x+12=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)

Vậy hệ phương trình có tập nghiệm \(S=\left\{\left(4;3\right);\left(3;4\right)\right\}\)

 

Ta có: \(\left\{{}\begin{matrix}x+y=7\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{7}{12}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\\dfrac{1}{7-y}+\dfrac{1}{y}=\dfrac{7}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\\dfrac{y}{y\left(7-y\right)}+\dfrac{7-y}{y\left(7-y\right)}=\dfrac{7}{12}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\\dfrac{7}{y\left(7-y\right)}=\dfrac{7}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\7y-y^2=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\y^2-7y+12=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\\left(y-3\right)\left(y-4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\\left[{}\begin{matrix}y-3=0\\y-4=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=7-3=4\\x=7-4=3\end{matrix}\right.\\\left[{}\begin{matrix}y=3\\y=4\end{matrix}\right.\end{matrix}\right.\)

Vậy: Hệ phương trình có hai cặp nghiệm (x,y) là (4;3) và (3;4)

20 tháng 12 2017

x la ́8 nhe

20 tháng 12 2017

3x - 7 = (-4) + 21

3x - 7 =  17

3x      = 17 + 7

3x      = 24

x        = 24 : 3

x        =    8

chả bk đúng ko nhưng chúc bạn học tốt !!!

18 tháng 9 2018

( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 100 ) = 5750

( x + x + ... + x ) + ( 1 + 2 + ... + 100 ) = 5750

SSH là : ( 100 - 1) : 1 + 1 = 100 ( số )

Tổng là : ( 100 + 1 ) . 100 : 2 = 5050

=> 100x + 5050 = 5750

=> 100x = 700

=> x = 7

Vậy x = 7

16 tháng 2 2022

\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)