rut gon \(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(a\ne b\ne c\)
\(\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ca\right)-3ab\left(a+b+c\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)
\(=\dfrac{a+b+c}{2}\)
Lời giải:
\(M=\frac{ab}{(c-a)(c-b)}+\frac{ac}{(b-a)(b-c)}+\frac{bc}{(a-b)(a-c)}\\ =\frac{-ab(a-b)}{(a-b)(b-c)(c-a)}+\frac{-ac(c-a)}{(a-b)(b-c)(c-a)}+\frac{-bc(b-c)}{(a-b)(b-c)(c-a)}\\ =\frac{-[ab(a-b)+ac(c-a)+bc(b-c)]}{(a-b)(b-c)(c-a)}\\ =\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)
a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)