2 / 2.5 + 2 / 5.8 + 2/ 8.11 + ............. + 2/ 14.17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}\)
= \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}\)
\(=\dfrac{1}{2}-\dfrac{1}{17}\)
\(=\dfrac{15}{34}\)
Vì \(\dfrac{15}{34}< \dfrac{1}{2}=>\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot27}< \dfrac{1}{2}\)
Ta có: \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{14.17}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)\(< \frac{17}{34}=\frac{1}{2}\)
\(\Rightarrow\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{14.17}< \frac{1}{2}\)
Vậy:..........................................(đpcm)
xét vế trái
ta có:đề\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}< < \frac{1}{2}\)
vậy vế trái bé hơn \(\frac{1}{2}\)
P/S: \(< < \)là luôn luôn bé hơn nha
k mình nha bạn
Thiengl2015#
Ta có :
\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{14.17}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}\)
Mà \(\frac{1}{2}-\frac{1}{17}< \frac{1}{2}\)
Nên \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{14.17}< \frac{1}{2}\left(đpcm\right)\)
M = 4/2.5 + 4/5.8 + 4/8.11 + 4/11.14 + 4/14.17 + 4/17.20
M= 4/3 . (1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20)
M= 4/3 . (1/2 - 1/20)
M= 4/3 . (10/20 - 1/20)
M= 4/3 . 9/20
M= 3/5
k nha
S = 1/2.5 +1/5.8 +1/8.11+1/11.14+1/14.17+1/17.20
S=1/3.(1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20)
S=1/3.(1/2-1/20)
S=1/3.(10/20-1/20)
S=1/3.9/20
S= 3/20
k nha
Đề hình như bị sai ban ơi sửa lại
\(A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{92.95}\)
\(A=3\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)
\(A=3.\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{95}\)
\(A=\dfrac{93}{190}\)
\(B=\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{92.95}\)
\(3B=2\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)
\(3B=2.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)
\(3B=2\left(\dfrac{1}{2}-\dfrac{1}{95}\right)\)
\(3B=2.\dfrac{93}{190}\)
\(3B=\dfrac{93}{95}\)
\(\Rightarrow B=\dfrac{31}{95}\)
Đặt \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(A=\frac{1}{2}-\frac{1}{17}\)
\(A=\frac{15}{34}\)
= \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)= \(\frac{1}{2}-\frac{1}{17}\)=\(\frac{15}{34}\)
\(\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right]\)
\(\frac{1}{3}\left[\frac{1}{2}-\frac{1}{20}\right]=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)
mk đầu tiên đó
\(\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+...+\frac{2}{14.17}=2.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{14.17}\right)\)
\(=\frac{2}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{14}-\frac{1}{17}\right)\)
\(=\frac{2}{3}.\left(\frac{1}{2}-\frac{1}{17}\right)=\frac{2}{3}.\frac{15}{34}=\frac{5}{17}\)
\(\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+...+\frac{2}{14.17}\)
\(=\frac{2}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{14.17}\right)\)
\(=\frac{2}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{14}-\frac{1}{17}\right)\)
\(=\frac{2}{3}.\left(\frac{1}{2}-\frac{1}{17}\right)\)
\(=\frac{2}{3}.\left(\frac{17}{34}-\frac{2}{34}\right)\)
\(=\frac{2}{3}.\frac{15}{34}=\frac{5}{17}\)