2) Thu gọn các tổng sau :
a) 1 + 3 + 3^2 + 3^3 + .........+ 3^100
b) 1+4+4^2 + 4^3 + ............+ 4^50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài A và B nè bạn!
A=1+3+32+...+3100
3A=3+32+33+...+3101
=>3A+1=1+3+32+...+3100+3101=A+3101
=>3A-A=3101-1
2A=3101-1
A=(3101-1)/2
B=1+4+42+...+450
4B=4+42+...+451
4B+1=1+4+42+...+450+451=B+451
=>4B-B=451-1
3B=451-1
B=(451-1)/3
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +....+ 99 - 100
A = (1 - 2) + ( 3- 4) + ....+ (99 - 100)
Xét dãy số 1; 3;...; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số số hạng của dãy số trên là: ( 99 - 1): 2 + 1 = 50
A là tổng của 50 nhóm mỗi nhóm cóa giá tri là: 1 - 2 = - 1
A = - 1 \(\times\) 50 = - 50
B = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 +...+ 97 - 98 - 99 + 100
B = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7 + 8) +...+ ( 97 - 98 - 99 + 100)
B = 0 + 0 +...+ 0
B = 0
2A = 3A - A = (3 + 32 + 33 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)
2A = 3101 - 1
A = \(\frac{3^{101}-1}{2}\)
3B = 4B - B = (4 + 42 + ... + 451) - (1 + 4 + 42 + ... + 450)
3B = 451 - 1
B = \(\frac{4^{51}-1}{3}\)
Ta có: \(A=1+4+4^2+...+4^{50}\)
\(\Rightarrow4A=4+4^2+...+4^{51}\)
\(\Rightarrow4A-A=\left(4+4^2+...+4^{51}\right)-\left(1+4+4^2+...+4^{50}\right)\)
\(\Rightarrow3A=4^{51}-1\)
\(\Rightarrow A=\frac{4^{51}-1}{3}\)
A = 1 + 4 + 42 + 43 + ... + 450
=> 4A = 4 + 42 + 43 + ... + 450 + 451
=> 4A - A = ( 4 + 42 + 43 + ... + 450 + 451) - ( 1 + 4 + 42 + 43 + ... + 450)
=> 3A = 451 - 1
=> A = (451 - 1) : 3
Chúc bạn học tốt!
Ta có : A=1+4+42+...+450
\(\Rightarrow\)4A=4+42+43+...+451
4A-A=(4+42+43+...+451)-(1+4+42+...+450)
\(\Rightarrow\)3A=451-1
\(\Rightarrow\)A=\(\frac{4^{51}-1}{3}\)
Vậy A=\(\frac{4^{51}-1}{3}\).
A=1+4+42+43+...+450
A=40+41+42+43+.....450
4A=4.(40+41+42+43+.....450)
4A=41+42+43+44+....+451
4A-A=(41+42+43+44+....+451)-(40+41+42+43+.....450)
3A=451-40
A=\(\frac{4^{51}-4^0}{3}\)
Chúc bn học tốt
a: từ 1 đến 100 sẽ có \(\dfrac{100-1}{1}+1=100-1+1=100\left(số\right)\)
=>Sẽ có \(\dfrac{100}{2}=50\) cặp số
1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=-1*50=-50
b: Sửa đề: \(2-4+6-8+...+46-48+50\)
Từ 2 đến 48 sẽ có \(\dfrac{48-2}{2}+1=24-1+1=24\left(số\right)\)
=>Sẽ có \(\dfrac{24}{2}=12\left(cặp\right)\)
\(2-4+6-8+...+46-48+50\)
\(=\left(2-4\right)+\left(6-8\right)+...+\left(46-48\right)+50\)
\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+50\)
\(=50-2\cdot24=50-48=2\)
c: Đặt A=\(1+2-3+4+...+97+98-99+100\)
\(=\left(1+2-3+4\right)+\left(5+6-7+8\right)+...+\left(97+98-99+100\right)\)
\(=4+12+...+196\)
Từ 4 đến 196 sẽ có \(\dfrac{196-4}{8}+1=\dfrac{192}{8}+1=25\left(số\right)\)
Tổng của dãy A là: \(\left(196+4\right)\cdot\dfrac{25}{2}=\dfrac{25}{2}\cdot200=100\cdot25=2500\)
a, Đặt \(A=1+3+3^2+3^3+....+3^{100}\)
=> \(3A=3+3^2+3^3+3^4+...+3^{101}\)
=> \(2A=3A-A=3^{101}-1\)
=> \(A=\frac{3^{101}-1}{2}\)
Vậy giá trị của biểu thức là \(\frac{3^{101}-1}{2}\)
b, Đặt \(B=1+4+4^2+2^3+....+4^{50}\)
=> \(4B=4+4^2+4^3+4^4+....+4^{51}\)
=> \(3B=4B-B=4^{51}-1\)
=> \(B=\frac{4^{51}-1}{3}\)
Vậy giá trị của biểu thức là \(\frac{4^{51}-1}{3}\)