Cho ABC vuông tại A, có AB = 6cm, AC = 8 cm, đường cao AH.
a) Chứng minh HBA đồng dạng với ABC.
b) Tính độ dài BC và AH ?
c) HM và HN là phân giác của ABH và ACH.
C/minh: MAN vuông cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=10^2-6^2=64\)
=>\(AH=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
c: Ta có: ΔAHB=ΔAHC
=>BH=CH
Xét ΔBMH vuông tại M và ΔCNH vuông tại N có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBMH=ΔCNH
d: Xét ΔABO vuông tại B và ΔACO vuông tại C có
AO chung
AB=AC
Do đó: ΔABO=ΔACO
=>OB=OC
=>ΔOBC cân tại O
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: BC=10cm; AH=4,8cm
b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC∼ΔHBA(g-g)
Suy ra: \(\dfrac{S_{ABC}}{S_{HBA}}=\left(\dfrac{BC}{BA}\right)^2=\left(\dfrac{10}{6}\right)^2=\left(\dfrac{5}{3}\right)^2=\dfrac{25}{9}\)
c) Xét ΔABC có BM là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{MA}{AB}=\dfrac{MC}{BC}\)(Tính chất tia phân giác)
hay \(\dfrac{MA}{6}=\dfrac{MC}{10}\)
mà MA+MC=AC=8cm(M nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{MA}{6}=\dfrac{MC}{10}=\dfrac{MA+MC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}MA=3\left(cm\right)\\MC=5\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABM vuông tại A, ta được:
\(BM^2=AB^2+AM^2\)
\(\Leftrightarrow BM^2=6^2+3^2=36+9=45\)
hay \(BM=3\sqrt{5}\left(cm\right)\)
Vậy: AM=3cm; \(BM=3\sqrt{5}\left(cm\right)\)
a: Xet ΔABC và ΔHBA có
góc B chung
góc BAC=góc BHA
=>ΔABC đồg dạng với ΔHBA
b: ΔABC vuông tại A mà AH là đường cao
nên HA^2=HB*HC
c: Xet ΔCAD vuông tại A và ΔCHE vuông tai H co
góc ACD=góc HCE
=>ΔCAD đồng dạng với ΔCHE
=>\(\dfrac{S_{CAD}}{S_{CHE}}=\left(\dfrac{CA}{CH}\right)^2=\left(\dfrac{8}{6,4}\right)^2=\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm