K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

a. Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow2^2-\left(m+1\right)\ge0\Leftrightarrow m\le3\)

b. Theo Viet \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=m+1\end{cases}}\)

Lại có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=16-2\left(m+1\right)=14-2m\)

Theo đề bài: 14 - 2m = 10 => m = 2. (TM)

5 tháng 8 2016

a) PT có nghiệm thì \(\Delta=4^2-4\left(m+1\right)\ge0\Leftrightarrow12-4m\ge0\Leftrightarrow4m\le12\Leftrightarrow m\le4\)

b) theo hệ thức viet ta có \(\hept{\begin{cases}x_1+x_2=-4\\x_1.x_2=m+1\end{cases}}\)

Có   \(x_1^2+x^2_2=10\Leftrightarrow x_1^2+x^2_2+2x_1.x_2=10+2x_1.x_2\Leftrightarrow\left(x_1+x_2\right)^2=10+m+1\)

\(\left(-4\right)^2=11+m\Leftrightarrow16=11+m\Leftrightarrow m=5\)

22 tháng 1

\(x^2+\left(4m+1\right)x+2\left(m-4\right)=0\)

\(\Delta=\left(4m+1\right)^2-4\cdot1\cdot2\left(m-4\right)=16m^2+8m+1-8m+32=16m^2+33\ge33>0\forall m\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-\left(4m+1\right)+\sqrt{16m^2+33}}{2}\\x_2=\dfrac{-\left(4m+1\right)-\sqrt{16m^2+33}}{2}\end{matrix}\right.\) 

Mà: \(x_2-x_1=17\)

\(\Leftrightarrow\dfrac{-\left(4m+1\right)-\sqrt{16m^2+33}}{2}-\dfrac{-\left(4m+1\right)+\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\dfrac{-\left(4m+1\right)-\sqrt{16m^2+33}+\left(4m+1\right)-\sqrt{16m^2+33}}{2}=17\) 

\(\Leftrightarrow\dfrac{-2\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\sqrt{16m^2+33}=-17< 0\)

Vậy không có m thỏa mãn 

14 tháng 3 2022

a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0 

Vậy pt luôn có 2 nghiệm pb 

b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)

Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)

 

14 tháng 3 2022

Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.

Δ=5^2-4(m-3)

=25-4m+12=-4m+27

Để phương trình có 2 nghiệm thì -4m+27>=0

=>m<=27/4

Theo đề, ta có: x1-2<0 và x2-2>0

=>(x1-2)(x2-2)<0

=>x1x2-2(x1+x2)+4<0

=>m-3-2*(-5)+4<0

=>m+1+10<0

=>m<-11

a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)

\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)

Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2

nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì 

\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau

5 tháng 7 2021

a, x = 3 , x= -1

b, m = 3 , m = 1

6 tháng 1 2023

Ptr có: `a+b+c=1-2m+2+2m-3=0`

   `=>[(x=1),(x=c/a=2m-3):}`

`@TH1: x_1=1;x_2=2m-3`

  `=>\sqrt{1}=2\sqrt{2m-3}`

`<=>\sqrt{2m-3}=1/2`

`<=>2m-3=1/4`

`<=>m=13/8`

`@TH2:x_1=2m-3;x_2=1`

  `=>\sqrt{2m-3}=2\sqrt{1}`

`<=>2m-3=4`

`<=>m=7/2`

23 tháng 12 2017

a, x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (1)

Với m = 0, phương trình (1) trở thành:

  x 2 − 2 x − 1 = 0 Δ ' = 2  ;  x 1 , 2 = 1 ± 2

Vậy với m = 2 thì nghiệm của phương trình (1) là  x 1 , 2 = 1 ± 2

b) Δ ' = m + 2

Phương trình (1) có hai nghiệm phân biệt  ⇔ m > − 2

Áp dụng hệ thức Vi-ét, ta có:  x 1 + x 2 = 2 ( m + 1 ) x 1 x 2 = m 2 + m − 1

Do đó:

     1 x 1 + 1 x 2 = 4 ⇔ x 1 + x 2 x 1 x 2 = 4 ⇔ 2 ( m + 1 ) m 2 + m − 1 = 4 ⇔ m 2 + m − 1 ≠ 0 m + 1 = 2 ( m 2 + m − 1 ) ⇔ m 2 + m − 1 ≠ 0 2 m 2 + m − 3 = 0 ⇔ m = 1 m = − 3 2

Kết hợp với điều kiện  ⇒ m ∈ 1 ; − 3 2  là các giá trị cần tìm.

AH
Akai Haruma
Giáo viên
31 tháng 3 2023

Lời giải:
Để pt có 2 nghiệm thì:

$\Delta'=(m+1)^2-(m^2+m-1)\geq 0$

$\Leftrightarrow m+2\geq 0\Leftrightarrow m\geq -2$
Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì ta có:

$x_1+x_2=2(m+1)$

$x_1x_2=m^2+m-1$

Khi đó:

$\frac{1}{x_1}+\frac{1}{x_2}=4$

$\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=4$

$\Leftrightarrow \frac{2(m+1)}{m^2+m-1}=4$

$\Rightarrow 2m^2+m-3=0$

$\Leftrightarrow (m-1)(2m+3)=0$

$\Leftrightarrow m=1$ hoặc $m=\frac{-3}{2}$ (đều thỏa mãn)