tính giá trị của biểu thức sau:
P=4+7+11+.....+127/2.6/4.12/9......420/400
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 4^5.9^4+2.6^9) : (2^10.3^8-6^8.2) = \(\frac{4^5.9^4+2.6^9}{2^{10}.3^8-6^8.2}=\frac{\left(2^2\right)^5.\left(3^2\right)^4+2.6^9}{2^{10}.3^8-6^8.2}\)
= \(\frac{2^{10}.3^8+2.6^9}{2^{10}.3^8-6^8.2}=\frac{2\left(6^8.8\right)}{2.6^8}=\frac{6^8.8}{6^8}=8\)
\(A=\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(=\dfrac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)
\(=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(=\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)
\(=-\dfrac{2}{6}=-\dfrac{1}{3}\)
\(A=\left\{\left[\left(\frac{-1}{2}+\frac{-1}{9}\right)-\frac{7}{18}\right]+\left(\frac{3}{5}+\frac{4}{35}+\frac{2}{7}\right)+\frac{1}{127}\right\}\)
\(\Rightarrow A=\left\{\left[\frac{-11}{18}-\frac{7}{18}\right]+1+\frac{1}{127}\right\}\)
\(A=\left(-1\right)+1+\frac{1}{127}\)
\(A=0+\frac{1}{127}\)
\(A=\frac{1}{127}\)
\(96-4:\left[\left(11-9\right)^5:\left(7-5\right)^3\right]\)
\(96-4:\left[2^5:2^3\right]=96-4:\left[2^2\right]=96-4:4=96-1=95\)
96 - 4: [ (11 - 9)5 : ( 7 - 5)3 ]
96 - 4 : [ 25 : 23 ]
96 - 4: 22
= 96 - 4: 4
= 96 - 1
= 95