Cho tam giác ABC vuông tại A. Điểm D thuộc cạnh BC. Gọi M và N theo thứ tự là hình chiếu của D trên AB và AC
a) AD=MN
b) Gọi AH là đường cao tam giác ABC. Chứng minh rằng góc MHN vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DMA = MAN = AND = 900
=> AMDN là hình chữ nhật
=> AD = MN
I là trung điểm của MN và AD
=> HI là đường trung tuyến của tam giác HAD vuông tại H
=> HI = AD/2
mà AD = MN (chứng minh trên)
=> HI = MN/2
mà HI là đường trung tuyến của tam giác HMN (I là trung điểm của MN)
=> Tam giác HMN vuông tại H
=> MHN = 900
Kẻ IK _I_ HD
mà AH _I_ HD
=> IK // AH
mà I là trung điểm của AD (chứng minh trên)
=> K là trung điểm của HD
=> IK là đường trung bình của tam giác DAH
=> IK = AH/2
Điểm I cách đoạn thẳng BC 1 khoảng cố định bằng 1 nửa AH không đổi
=> Điểm I di chuyển trên đường thẳng song song với BC và cách BC 1 khoảng bằng nửa AH
Chúc bạn học tốt *(^o^)*
Tự vẽ hình nha, vẽ trên máy lâu lắm
a)Cm AMDN là HCN(3 góc vuông)
=>AD=MN(t/c hcn)
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
a) xét tứ giác AMDN có
MAN = 90độ (ABC vuông tại A)
DMA = 90độ (DM vuông góc AB,M thuộc AB)
DNA = 90độ (DN vuông góc AC,N thuộc AC)
⇒Tứ giác AMDN là hình chữ nhật (T/c)
⇒AD=MN(T/c hình chữ nhật)(đpcm)
a: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
=>AMDN là hình chữ nhật
=>AD=MN
b: Gọi O là giao điểm của AD và MN
Vì AMDN là hình chữ nhật
nên AD cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AD và MN
Ta có: AD=MN
\(OA=OD=\dfrac{AD}{2}\)
\(OM=ON=\dfrac{MN}{2}\)
Do đó: OA=OD=OM=ON=AD/2=MN/2
Ta có: ΔHAD vuông tại H
mà HO là đường trung tuyến
nên \(HO=\dfrac{AD}{2}\)
mà AD=MN
nên \(HO=\dfrac{MN}{2}\)
Xét ΔNMH có
HO là đường trung tuyến
\(HO=\dfrac{MN}{2}\)
Do đó: ΔNHM vuông tại H
=>\(\widehat{MHN}=90^0\)
a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
b: Xét tứ giác NKIM có
D là trung điểm của NI
D là trung điểm của KM
Do đó: NKIM là hình bình hành
mà NI vuông góc với KM
nên NKIM là hình thoi
c: Xét ΔABC có DN//AB
nên DN/AB=CN/CA=CD/CB
=>CN=1/2CA
hay N là trung điểm của AC
Xét ΔABC có DM//AC
nên BM/BA=BD/BC=1/2
hay BM=1/2BA
=>M là trung điểm của AB
Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên MA=MH
Ta có: ΔAHC vuông tại H
mà HN là đừog trung tuyến
nên HN=AN
Xét ΔMAN và ΔMHN có
MA=MH
AN=HN
MN chung
Do đó: ΔMAN=ΔMHN
Suy ra:góc MHN=90 độ
a: Xét tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
=>AMDN là hình chữ nhật
b: góc AHD=góc AMD=góc AND
=>A,H,D,M,N cùng nằm trên đường tròn đường kính AD
=>A,H,D,M,N cùng nằm trên đường tròn đường kính NM
=>góc NHM=90 độ
a: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
Do đó: AMDN là hình chữ nhật
Suy ra: AD=MN
Tứ giác ADHE là hình chữ nhật (có 3 góc vuông) \(\Rightarrow\left\{{}\begin{matrix}AD=EH\\AE=DH\end{matrix}\right.\)
Ta có: \(\dfrac{S_{ABC}}{S_{ADE}}=\dfrac{\dfrac{1}{2}AB.AC}{\dfrac{1}{2}.AD.AE}=\dfrac{AB.AC}{AD.AE}=\dfrac{AB.AC}{DH.EH}=\left(\dfrac{AB}{EH}\right).\left(\dfrac{AC}{DH}\right)\)
Mà \(DH||AC\) (cùng vuông góc AB) \(\Rightarrow\dfrac{AC}{DH}=\dfrac{BC}{BH}\) (Talet)
Tương tự: \(\dfrac{AB}{EH}=\dfrac{BC}{CH}\)
\(\Rightarrow\dfrac{S_{ABC}}{S_{ADE}}=\left(\dfrac{BC}{BH}\right)\left(\dfrac{BC}{CH}\right)=\dfrac{BC^2}{BH.CH}\ge\dfrac{BC^2}{\dfrac{1}{4}\left(BH+CH\right)^2}=\dfrac{4BC^2}{BC^2}=4\) (đpcm)
Dấu "=" xảy ra khi \(BH=CH\) hay tam giác ABC vuông cân tại A
a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
Suy ra: AD=MN
b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ
nên AMHD là tứ giác nội tiếp
=>A,M,H,D cùng thuộc 1 đường tròn (1)
Xét tứ giác AMDN có góc AMD+góc AND=180 độ
nên AMDN là tứ giác nội tiếp
=>A,M,D,N cùng thuộc 1 đường tròn(2)
Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn
=>AMHN là tứ giác nội tiếp
=>góc AHM=90 độ