Cho P= 6n-2 / 8n.
Tìm giá trị của n để P nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
A=\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}\)=\(\frac{6n+4}{3n+2}-\frac{5}{3n+2}\)= 2-\(\frac{5}{3n+2}\)
Để A đạt GTNN thì \(\frac{5}{3n+2}\)đạt GTLN \(\Leftrightarrow\)3n+2 <0 và đạt GTLN
=>3n+2 =-1 => 3n=-3=>n=-1khi đó A= 7
Vậy Amin=7 khi x=-1
Ta có :
\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Để \(A\) đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN suy ra \(3n+2>0\) và đạt GTNN
\(\Rightarrow\)\(3n+2=1\)
\(\Leftrightarrow\)\(3n=-1\)
\(\Leftrightarrow\)\(n=\frac{-1}{3}\)
\(\Rightarrow\)\(A=\frac{6n-1}{3n+2}=\frac{\frac{6.\left(-1\right)}{3}-1}{\frac{3.\left(-1\right)}{3}+2}=\frac{-2-1}{-1+2}=\frac{-3}{1}=-3\)
Vậy \(A_{min}=-3\) khi \(x=\frac{-1}{3}\)
a) \(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\inℤ\)mà \(n\inℤ\)nên \(3n+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
mà \(n\inℤ\)suy ra \(n\in\left\{-1,1\right\}\).
b) \(A=2-\frac{5}{3n+2}\)có giá trị nhỏ nhất suy ra \(\frac{5}{3n+2}\)có giá trị lớn nhất suy ra \(3n+2\)có giá trị dương nhỏ nhất mà \(n\inℤ\)nên \(3n+2\)dương nhỏ nhất bằng \(2\)tại \(n=0\).
\(minA=2-\frac{5}{2}=-0,5\).
a)Ta có:6n-1/2n+2=6n+4-5/3n+2=6n+4/3n+2-5/3n+2=2-5/3n+2
Ta thấy 2 là số nguyên vậy 5/3n-2 phải là số nguyên để 6n-1/3n+2 là số nguyên
3n-2 là Ư(5)={-1;1-5;5}
Với 3n-2=-1 suy ra 3n=-1+2=1 suy ra n=0,3..333(không thỏa mãn điều kiện số nguyên)
...............1............3n=1+2=3 ...........n=1(thỏa mãn điều kiện)
...............-5...........3n=-5+1=4............n=1,33..3(không t/m đ/k số nguyên)
...............5..............3n=5+1=5............n=2(t/m đ/k số nguyên)
Vậy n=1;2
để m có giá trị nguyên thì
6n-1/3n+2
6n-1-6n-4/3n+2
-5/3n+2
3n+2c[1;5;-1;-5]
3n{-1;3;-3;-7}
nếu 3n=-1\(\Rightarrow\)không tìm được n thỏa mãn
nếu..................n=1
nếu..................n=-1
nếu..................không tìm được n thỏa mãn