Bài 1Tìm các số tự nhiên n biết:
a,12/n là sô tự nhiên b,21/n-2
Bài 2 Tìm các số tự nhiên
a,3/5 < n/5 <8/5. b, 1 < n/3 < 12/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
12=1.12=2.6=3.4=4.3=6.2.12.1
và: 2x-1 là Ư lẻ của 12
=> 2x-1 E {1;3}
+) 2x-1=1=>2x=1+1=2
=>x=1
=>y+3=12=>y=9
Vậy x=1;y=9
+) 2x-1=3=>2x=3+1=4=>x=4:2=2
=> y+3=12:3=4
=>y=1
Vậy y=1;x=2
6 là bội của n+1
=> 6 chia hết cho n+1
=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n={-7,-4,-3,-2,0,1,2,5}
Ư(12) = {1; 2; 3; 4; 6; 12}. Ta có n + 5 ≥ 5 nên:
n + 5 | 6 | 12 |
n | 1 | 7 |
Nếu n ít hơn 4 chữ số thì S(n)+n<=999+27<2000
Nếu n nhiều hơn 4 chữ số thì S(n)+n>=10001+1><2000
Nên n có 4 chữ số
=>n có dạng 1000a+100b+10c+d
=>S(n)+n=1001a+101b+11c+2d=2000
a chỉ có thể bằng 1=>101b+11c+2d=999
11c+2d<=13*9=117
=>101b>=882 mà 101b<=999
=>b=9
=>11c+2d=999-909=90
2d<=18
=>11c>=72
Mà 11c<90
=>c=7 hoặc 8
c=7 không tìm được d
=>c=8=>d=6
=>n=1981
a) gọi UCLN(n+2;n+3)=d
ta có :
n+2 chia hết cho d
n+3 chia hết cho d
=>(n+3)-(n+2) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+2;n+3)=1
=>nguyên tố cùng nhau
b)
gọi UCLN(2n+3;3n+5)=d
ta có : 2n+3 chia hết cho d =>3(2n+3) chia hết cho d =>6n+9 chia hết cho d
3n+5 chia hết cho d => 2(3n+5) chia hết cho d =>6n+10 chia hết cho d
=>(6n+10)-(6n+9) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(2n+3;3n+5)=1
=>nguyên tố cùng nhau
=>ĐPCM
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)