giải hộ mình
tìm x : x+6/5 + x+7/6 + x+8/7 = x+2/1 + x+3/2 + x+4/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+9)(x-9)+(x+8)(x-8)+(x+7)(x-7)+(x+6)(x-6)+(x+5)(x-5)+(x+4)(x-4)+(x+3)(x-3)+(x+2)(x-2)+(x+1)(x-1)
=x2-81+x2-64+x2-49+x2-36+x2-25+x2-16+x2-9+x2-4+x2-1
=9x2-285
1/ 10(X-7)-8(X+5)=6(-5)+24
10x - 70 - 8x - 40 = -30 +24
2x - 110 = -6
2x = 104
x=52
2/ 8(X-|-7|)-6(X-2)=|-8|.6-50
8(x - 7) - 6(x-2) = 8.6 - 50
8x - 56 - 6x +12 =48 -50
2x - 44 = -2
2x = 42
x=21
3/ 2(4X-8)-7(3+X)=|-4|(3-2)
8x-16 - 21 - 7x = 4.1
x-37=4
x=41
4/ 12(X-4)=6(x-2)-16(X+3)=7|-4|
12x - 48 = 6x - 12 - 16x -48 =7.4
12x - 48 = 28
12x=76
x=19/3
5/ 4(X-5)-7(5-X)+10(5-X)=-3
4x - 20 -35 +7x + 50 -10x = -3
x - 5 = -3
x = -2
Chúc bạn học tốt!
\(\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\times\dfrac{5}{6}\times\dfrac{6}{7}\times\dfrac{7}{8}\times\dfrac{8}{9}\)
\(=\dfrac{1\times2\times3\times4\times5\times6\times7\times8}{2\times3\times4\times5\times6\times7\times8\times9}\)
\(=\dfrac{1}{9}\)
nhiều quá :((
\(a,2\left(x-5\right)-3\left(x+7\right)=14\)
\(2x-10-3x-21=14\)
\(-x-31=14\)
\(-x=45\)
\(x=45\)
\(b,5\left(x-6\right)-2\left(x+3\right)=12\)
\(5x-30-2x-6=12\)
\(3x-36==12\)
\(3x=48\)
\(x=16\)
\(c,3\left(x-4\right)-\left(8-x\right)=12\)
\(3x-12-8+x=0\)
\(4x-20=0\)
\(4x=20\)
\(x=5\)
Cố nốt nha bn !
cảm ơn, bn nha:)))
mà hình như bạn TOP 3 trả lời câu hỏi pải ko nhỉ???
cấy pt dạng ni lớp 8 học rồi mà :v
chỉ là thêm công thức nghiệm vào thôi ._.
1. ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16 = 0
<=> [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16 = 0
<=> ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 = 0
Đặt t = x2 + 10x + 16
pt <=> t( t + 8 ) + 16 = 0
<=> t2 + 8t + 16 = 0
<=> ( t + 4 )2 = 0
<=> ( x2 + 10x + 16 + 4 )2 = 0
<=> ( x2 + 10x + 20 )2 = 0
=> x2 + 10x + 20 = 0
Δ' = b'2 - ac = 25 - 20 = 5
Δ' > 0 nên phương trình có hai nghiệm phân biệt
\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-5+\sqrt{5}\)
\(x_2=\frac{-b'-\sqrt{\text{Δ}'}}{a}=-5-\sqrt{5}\)
Vậy ...
2. ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 24 = 0
<=> [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 24 = 0
<=> ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 24 = 0
Đặt t = x2 + 5x + 4
pt <=> t( t + 2 ) - 24 = 0
<=> t2 + 2t - 24 = 0
<=> ( t - 4 )( t + 6 ) = 0
<=> ( x2 + 5x + 4 - 4 )( x2 + 5x + 4 + 6 ) = 0
<=> x( x + 5 )( x2 + 5x + 10 ) = 0
Vì x2 + 5x + 10 có Δ = -15 < 0 nên vô nghiệm
=> x = 0 hoặc x = -5
Vậy ...
3. ( x - 1 )( x - 3 )( x - 5 )( x - 7 ) - 20 = 0
<=> [ ( x - 1 )( x - 7 ) ][ ( x - 3 )( x - 5 ) ] - 20 = 0
<=> ( x2 - 8x + 7 )( x2 - 8x + 15 ) - 20 = 0
Đặt t = x2 - 8x + 7
pt <=> t( t + 8 ) - 20 = 0
<=> t2 + 8t - 20 = 0
<=> ( t - 2 )( t + 10 ) = 0
<=> ( x2 - 8x + 7 - 2 )( x2 - 7x + 8 + 10 ) = 0
<=> ( x2 - 8x + 5 )( x2 - 7x + 18 ) = 0
<=> \(\orbr{\begin{cases}x^2-8x+5=0\\x^2-7x+18=0\end{cases}}\)
+) x2 - 8x + 5 = 0
Δ' = b'2 - ac = 16 - 5 = 11
Δ' > 0 nên có hai nghiệm phân biệt
\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4+\sqrt{11}\)
\(x_2=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4-\sqrt{11}\)
+) x2 - 7x + 18 = 0
Δ = b2 - 4ac = 49 - 72 = -23 < 0 => vô nghiệm
Vậy ...
a) 32.x+2=1342176728
32.x=134217728-2
32.x=134217726
x=134217726:32
x=4194303,938
1x2= 2 1x2x3=6 1x2x3x4=24 1x2x3x4x5=120 1x2x3x4x5x6=720 1x2x3x4x5x6x7=5040
1x2x3x4x5x6x7x8=40320 1x2x3x4x5x6x7x8x9=362880 1x2x3x4x5x6x7x8x9x10=3628800
1 x 2 = 2
1 x 2 x 3 = 6
1 x 2 x 3 x 4 = 24
1 x 2 x 3 x 4 x 5 = 120
1 x 2 x 3 x 4 x 5 x 6 = 720
1 x 2 x 3 x 4 x 5 x 6 x 7 = 5040
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 = 40320
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 = 362880
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 = 3628800
\(1,\\ x+\dfrac{1}{2}=-\dfrac{5}{3}\\ x=-\dfrac{5}{3}-\dfrac{1}{2}\\ x=-\dfrac{13}{6}\\ Vậyx=-\dfrac{13}{6}\)
\(2,\\ \dfrac{1}{3}-x=\dfrac{3}{5}\\ x=\dfrac{1}{3}-\dfrac{3}{5}\\ x=-\dfrac{4}{15}\\ Vậyx=-\dfrac{4}{15}\)
\(3,\\ 3-4+x=\dfrac{7}{2}\\ -1+x=\dfrac{7}{2}\\ x=\dfrac{7}{2}+1\\ x=\dfrac{9}{2}\\ Vậyx=\dfrac{9}{2}\)
\(4,\\ x-\dfrac{4}{3}=-\dfrac{7}{9}\\ x=-\dfrac{7}{9}+\dfrac{4}{3}\\ x=\dfrac{15}{27}\\ Vậyx=\dfrac{15}{27}\)
\(5,\\ x-\left(-\dfrac{7}{3}\right)=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{3}\\ x=-\dfrac{27}{18}\\ Vậyx=-\dfrac{27}{18}\)
\(6,\\ x-\dfrac{1}{5}=\dfrac{9}{10}\\ x=\dfrac{9}{10}+\dfrac{1}{5}\\ x=\dfrac{11}{10}\\ Vậyx=\dfrac{11}{10}\)
\(7,\\ x+\dfrac{5}{12}=\dfrac{3}{8}\\ x=\dfrac{3}{8}-\dfrac{5}{12}\\ x=-\dfrac{1}{24}\\ Vậyx=-\dfrac{1}{24}\)
\(8,\\ x+\dfrac{5}{4}=\dfrac{7}{6}\\ x=\dfrac{7}{6}-\dfrac{5}{4}\\ x=-\dfrac{9}{24}\\ Vậyx=-\dfrac{9}{24}\)
\(9,\\ x-\dfrac{2}{7}=\dfrac{1}{35}\\ x=\dfrac{1}{35}+\dfrac{2}{7}\\ x=\dfrac{11}{35}\\ Vậyx=\dfrac{11}{35}\\ 10,\\ x-\dfrac{1}{5}=-\dfrac{7}{10}\\ x=-\dfrac{7}{10}+\dfrac{1}{5}\\ x=-\dfrac{1}{2}\\ Vậyx=-\dfrac{1}{2}\)
ahiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii hãy ấn a
1: \(2^x=64\)
=>\(x=log_264=6\)
2: \(2^x\cdot3^x\cdot5^x=7\)
=>\(\left(2\cdot3\cdot5\right)^x=7\)
=>\(30^x=7\)
=>\(x=log_{30}7\)
3: \(4^x+2\cdot2^x-3=0\)
=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)
=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)
=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)
=>\(2^x-1=0\)
=>\(2^x=1\)
=>x=0
4: \(9^x-4\cdot3^x+3=0\)
=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)
Đặt \(a=3^x\left(a>0\right)\)
Phương trình sẽ trở thành:
\(a^2-4a+3=0\)
=>(a-1)(a-3)=0
=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)
=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)
=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)
=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)
=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)
=>\(3^{x+1}-2=0\)
=>\(3^{x+1}=2\)
=>\(x+1=log_32\)
=>\(x=-1+log_32\)
6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)
Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)
Phương trình sẽ trở thành:
\(\dfrac{1}{b}+b=2\)
=>\(b^2+1=2b\)
=>\(b^2-2b+1=0\)
=>(b-1)2=0
=>b-1=0
=>b=1
=>\(\left(2+\sqrt{3}\right)^x=1\)
=>x=0
7: ĐKXĐ: \(x^2+3x>0\)
=>x(x+3)>0
=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)
=>\(x^2+3x=4^1=4\)
=>\(x^2+3x-4=0\)
=>(x+4)(x-1)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)