Chỉ cần đáp án ạ
Tổng của một cấp số nhân lùi vô hạn bằng 2, tổng của ba số hạng đầu tiên của cấp số nhân bằng 9/4 số hạng đầu u1 của cấp số nhân là
A. u1=3
B. u1=4
C. u1=9/2
D. u1=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Tổng của n số hạng đầu tiên của CSN với công bội q là
S n = u 1 . 1 - q n 1 - q
ở đây u 1 = 2 q = u 2 u 1 = - 1
Do đó S 10 = 2
Đáp án B
Tổng của n số hạng đầu tiên của CSN với công bội q là
De co cho thieu du kien la co bao nhieu so hang ko nhi ?Hay no la 1 csn lui vo han? Neu lui vo han thi lam duoc
\(\left\{{}\begin{matrix}q=4\\\dfrac{1}{u_1}+\dfrac{1}{u_2}+\dfrac{1}{u_3}+...+\dfrac{1}{u_n}+....=2\end{matrix}\right.\)
\(u_2=u_1.q;u_3=u_1.q^2;....;u_n=u_1.q^{n-1}\)
\(\Rightarrow\dfrac{1}{u_1}+\dfrac{1}{u_1.q}+\dfrac{1}{u_1.q^2}+...+\dfrac{1}{u_1.q^{n-1}}+....=2\)
\(\Leftrightarrow\dfrac{1}{u_1}\left(1+\dfrac{1}{q}+\dfrac{1}{q^2}+...+\dfrac{1}{q^{n-1}}+...\right)=2\)
Cần tính tổng trong ngoặc
\(\left\{{}\begin{matrix}u_1'=1\\q'=\dfrac{1}{q}\end{matrix}\right.\)
\(\Rightarrow S'_n=\dfrac{1}{1-q'}=\dfrac{1}{1-\dfrac{1}{4}}=\dfrac{4}{3}\)
\(\Rightarrow u_1=\dfrac{S'_n}{2}=\dfrac{4}{3.2}=\dfrac{2}{3}\)
\(\dfrac{u_1}{1-q}=2\Rightarrow q=\dfrac{2-u_1}{2}\)
\(u_1+u_1q+u_1q^2=\dfrac{9}{4}\)
\(\Rightarrow u_1+\dfrac{u_1\left(2-u_1\right)}{2}+\dfrac{u_1\left(2-u_1\right)^2}{4}=\dfrac{9}{4}\)
\(\Rightarrow u_1^3-6u_1^2+12u_1-9=0\)
\(\Rightarrow u_1=3\)