1.Cho tam giác nhọn ABC , hai đường cao BD và CE
a, Chứng minh tam giác ADB đồng dạng với tam giác AEC
b, Chứng minh \(\widehat{AED}=\widehat{ACB}\)
2.Giải phương trình : \(10\left(x+\dfrac{1}{x}\right)^2+5\left(x^2+\dfrac{1}{x^2}\right)^2-5\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x-5\right)^2-5\)
Bài 1:
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD∼ΔACE(g-g)
2.
ĐK: \(x\ne0\)
\(10\left(x+\dfrac{1}{x}\right)^2+5\left(x^2+\dfrac{1}{x^2}\right)^2-5\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x-5\right)^2-5\)
\(\Leftrightarrow10\left(x+\dfrac{1}{x}\right)^2+5\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x}-x^2-\dfrac{1}{x^2}-2\right)^2=\left(x-5\right)^2-5\)
\(\Leftrightarrow10\left(x+\dfrac{1}{x}\right)^2-10\left(x^2+\dfrac{1}{x^2}\right)=\left(x-5\right)^2-5\)
\(\Leftrightarrow\left(x-5\right)^2-5=20\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=5\\x-5=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=0\left(l\right)\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=10\)