K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao choAM > BM và AN > CN. Chứng minh rằng:a) BC < BM + CN + MN.b) BC nhỏ hơn chu vi của tam giác AMN.Bài 2. Tính chu vi của tam giác cân ABC, biết:a) AB = 2cm, AC = 5cmb) AB = 16cm, AC = 8cm.Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M khôngtrùng với C). Chứng minh MA + MB > CA + CB.Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền...
Đọc tiếp

Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao cho
AM > BM và AN > CN. Chứng minh rằng:
a) BC < BM + CN + MN.
b) BC nhỏ hơn chu vi của tam giác AMN.

Bài 2. Tính chu vi của tam giác cân ABC, biết:
a) AB = 2cm, AC = 5cm
b) AB = 16cm, AC = 8cm.

Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M không
trùng với C). Chứng minh MA + MB > CA + CB.

Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền trong của góc. Hãy xác định điểm A
trên Ox, điểm B trên Oy sao cho chu vi tam giác MAB là nhỏ nhất (Gợi ý: Lấy E, F
sao cho Ox là trung trực của ME, Oy là trung trực của MF).

Bài 5. Cho tam giác ABC, điểm O nằm giữa B và C. Trên tia đối của tia OA lấy điểm
D. Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh

MN< hoặc = (AC+BD)/2

Bài 6. Cho góc xOy, vẽ Oz là tia phân giác của góc xOy. Từ điểm M ở trong góc xOz
vẽ MH vuông góc với Ox (H thuộc Ox), vẽ MK vuông góc với Oy (K thuộc Oy).
Chứng minh MH < MK.

0
9 tháng 3 2018

Giải bài 70 trang 103 Toán 8 Tập 1 | Giải bài tập Toán 8

- Cách 1:

Kẻ CH ⊥ Ox.

Ta có CB = CA (gt).

CH // AO (cùng vuông góc Ox)

⇒ HB = OH

⇒ CH là đường trung bình của tam giác AOB

⇒ CH = AO/2 = 1cm.

Điểm C cách tia Ox cố định một khoảng không đổi 1cm nên C di chuyển trên tia song song với Ox, cách Ox một khoảng bằng 1cm và nằm trong góc xOy.

- Cách 2:

Vì C là trung điểm của AB nên OC là trung tuyến ứng với cạnh huyền AB do đó OC = CA.

Điểm C di chuyển trên tia Em thuộc đường trung trực của OA.

10 tháng 9 2021

m:

Kẻ CH vuông góc với Ox

Ta có: CB = CA (gt) và CH // AO (cùng vuông góc với Ox)

⇒ CH = 12AO = 12.2 = 1 (cm)

Điểm C cách tia Ox cố định một khoảng không đổi 1cm nên điểm C di chuyển trên đường thẳng m song song với Ox và cách Ox một khoảng 

17 tháng 2 2016

dcsjdfhksjdfgkhdfgkhxvckvgd

21 tháng 4 2017

Cách 1:

Kẻ CH ⊥ Ox

Ta có CB = CA (gt)

CH // AO (cùng vuông góc Ox)

Suy ra CH = 1212AO = 1212.2 = 1 (cm)

Điểm c cách tia Ox cố định một khoảng không đổi 1cm nên C di chuyển trên tia Em song song với Ox và cách Ox một khoảng bằng 1cm.

Cách 2:

Vì C là trung điểm của AB nên OC là trung tuyến ứng với cạnh huyền AB

do đó CO = CA

Điểm C di chuyển trên tia Em thuộc đường trung trực của OA

25 tháng 10 2018

mình vẫn chưa hiểu c2 cho lắm

tại sao lại là đương trung trực?

đúng mình cho 2 like

24 tháng 5 2016

Vẽ CQ vuông góc đường thẳng OA tại Q.

mà OB vuông góc OA (vì góc xOy vuông)

\(\Rightarrow OB\) song song CQ

\(\Delta ACQ\)có B là trung điểm AC

                     OB song song CQ (cmt)

\(\Rightarrow\)O là trung điểm AQ hay Q đối xứng A qua O

* VẬY bất kỳ vị trí của điểm B trên tia Ox thì điểm C luôn di chuyển trên đường thẳng đối xứng với A qua O và vuông góc với OA