Cho các số x,y,z tỉ lệ với các số a,b,c. CMR:
(x2+2y2+3z2)(a2+2b2+3c2)=(ax+2by+3cz)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x, y, z tỉ lệ với các số a, b, c nên suy ra x = ka, y = kb, z = kc
Thay x = ka, y = kb, z = kc vào ( x 2 + 2 y 2 + 3 z 2 ) ( a 2 + 2 b 2 + 3 c 2 ) ta được
[ ( k a ) 2 + 2 ( k b ) 2 + 3 ( k c ) 2 ] ( a 2 + 2 b 2 + 3 c 2 ) = ( k 2 a 2 + 2 k 2 b 2 + 3 k 2 c 2 ) ( a 2 + 2 b 2 + 3 c 2 ) = k 2 ( a 2 + 2 b 2 + 3 c 2 ) ( a 2 + 2 b 2 + 3 c 2 ) = k 2 ( a 2 + 2 b 2 + 3 c 2 ) 2 = [ k ( a 2 + 2 b 2 + 3 c 2 ) ] 2 = ( k a 2 + 2 k b 2 + 3 k c 2 ) 2 = ( k a . a + 2 k b . b + 3 k c . c ) 2 = ( x a + 2 y b + 3 z c ) 2
do x = ka,y = kb, z = kc
Vậy
( x 2 + 2 y 2 + 3 z 2 ) ( a 2 + 2 b 2 + 3 c 2 ) = ( a x + 2 b y + 3 c z ) 2
Đáp án cần chọn là: D
Cần cm: \(\left(x^2+2y^2+3z^2\right)\left(a^2+2b^2+3c^2\right)=\left(ax+2by+3cz\right)^2\)
Theo bđt Cauchy-Schwarz:
\(VT=\left(x^2+2y^2+3z^2\right)\left(a^2+2b^2+3c^2\right)\ge\left(ax+\sqrt{2}y.\sqrt{2}b+\sqrt{3}z.\sqrt{3}c\right)^2\)
\(\Rightarrow VT\ge\left(ax+2by+3cz\right)^2\)\(=VP\)
Dấu "=" khi \(\frac{x}{a}=\frac{\sqrt{2}y}{\sqrt{2}b}=\frac{\sqrt{3}z}{\sqrt{3}c}\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Ta thấy dấu "=" ở đây xảy ra vì từ gt \(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrowđpcm\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak;y=bk;z=ck\)
\(\left(x^2+2y^2+3z^2\right)\left(a^2+2b^2+3c^2\right)\)
\(=\left[\left(ak\right)^2+2\left(bk\right)^2+3\left(ck\right)^2\right]\left(a^2+2b^2+3c^2\right)\)
\(=k^2\left(a^2+2b^2+3c^2\right)\left(a^2+2b^2+3c^2\right)\)
\(=k^2\left(a^2+2b^2+3c^2\right)^2\left(1\right)\)
\(\left(ax+2by+3cz\right)^2\)
\(=\left(a.ak+2b.bk+3c.ck\right)^2\)
\(=\left[k\left(a^2+2b^2+3c^2\right)\right]^2\)
\(=k^2\left(a^2+2b^2+3c^2\right)^2\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\Rightarrow dpcm\)
lên gg sợt cách chứng minh bất đẳng thức buniakovsky nhé
Phương Trình Hai Ẩn, bạn ơi nếu thế mk hỏi trên đấy r, chứ k mất thời gian hỏi ở đây đâu bạn
Lời giải:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=m\Rightarrow x=am; y=bm; z=cm\)
Khi đó:
\((x^2+2y^2+3z^2)(a^2+2b^2+3c^2)=[(am)^2+2(bm)^2+3(cm)^2](a^2+2b^2+3c^2)\)
\(=m^2(a^2+2b^2+3c^2)^2(1)\)
Và:
\((ax+2by+3cz)^2=(a.am+2b.bm+3c.cm)^2=[m(a^2+2b^2+3c^2)]^2\)
\(=m^2(a^2+2b^2+3c^2)^2(2)\)
Từ (1) và (2) ta có đpcm.