K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: ΔCED đồng dạng với ΔCAB

a: Xét ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

b: BC=căn 3^2+4^2=5cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>CD=20/7cm; BD=15/7cm

a: Xét ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

b: BC=căn 3^2+4^2=5cm

Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=5/7

=>DC=20/7cm

11 tháng 5 2021

Bạn có bt vẽ hình và viết giả thiết ,kết luận ko 

Gửi cho mình với

a: Xét ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

c: CE/DE=CA/AB=4/3

c: CD/DB=4/3
=>CD/4=DB/3=15/7

=>CD=60/7cm; DB=45/7cm

CD/CB=CE/CA=DE/AB

=>4/7=CE/12=DE/9

=>DE=36/7cm; CE=48/7cm

S ABDE=1/2*AE*(ED+AB)=1/2(36/7+9)*36/7=1782/49cm2

a: Xet ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

b: ΔCAB có DE//AB

nên CD/CB=DE/AB

=>CD/CE=CB/AB=15/9=5/3

c: AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=15/7

=>BD=45/7cm

=>BD/BC=3/7

=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot\dfrac{1}{2}\cdot9\cdot12=108\cdot\dfrac{3}{14}=54\cdot\dfrac{3}{7}=\dfrac{162}{7}\left(cm^2\right)\)

5 tháng 5 2021

Mình cũng đang định hỏi nhưng ko bik nữa

 

10 tháng 5 2017

A B C D H E K

a)Xét tam giác AHB và tam giác AHE ( đều vuông tại H )

      AH là cạnh chung

      \(\widehat{BAH}=\widehat{HAE}\)(Vì AD là tia phân giác)

            \(\Rightarrow\Delta AHB=\Delta AHE\)(cạnh góc vuông và  góc nhọn kề cạnh ấy)

b)Vì AH vừa là tia phân giác vừa là tia vuông góc 

       \(\Rightarrow\Delta ABE\) là tam giác cân mà lại có góc BAE bằng 600

      \(\Rightarrow\Delta ABE\) là tam giác đều\(\Rightarrow\)AH cũng là đường trung tuyến \(\Rightarrow\)BH=HE(1)

              Vì KH//AB\(\Rightarrow\widehat{BAE}=\widehat{HKE};\widehat{KHE}=\widehat{ABE}\)

                       Mà góc KEH chung

       \(\Rightarrow\Delta KHE\) là tam giác đều

        \(\Rightarrow KH=HE\left(2\right)\)

Từ (1) và (2) suy ra:KH=HB=HE

      Theo định lý nếu trong tam giác cạnh đối diện với cạnh huyền bằng nửa cạnh huyền thì tam giác đó vuông

 \(\Rightarrow\Delta BKE\) vuông tại K

   \(\Rightarrow\widehat{BKE}=90^0\)

5 tháng 2 2019

Tự vẽ hình

CM: a) Ta có : góc BAD + góc DAC = 900 + góc DAC = góc BAC (1)

Mà góc BAC = 900 + BCA (2)

Từ (1) và (2) suy ra góc DAC = góc DCA 

                      => t/giác ADC là t/giác cân tại D

Ta lại có: góc BAD + góc DAE = 1800 (kề bù)

      => góc DAE = 1800 - góc BAD = 1800 - 900 = 900

Mà góc CAE = 900 - góc DAC (3)

     góc ACE = 900 - góc BCA (4)

Và góc DAC = góc DCA (cmt) (5)

Từ (3);(4);(5) suy ra góc EAC = góc ACE

=> t/giác AEC là t/giác cân tại E

b) Ta có: t/giác ADC cân tại D(cmt) => AD = DC

             t/giác AEC cân tại E (Cmt) => EA = EC

Xét t/giác ADE và t/giác CDE

có AE = CE (cmt)

  AD = DC (Cmt)

  DE :chung

=> t/giác ADE = t/giác CDE (c.c.c)

=> góc ADE = góc EDC (hai góc tương ứng)

Xét t/giác ADN và t/giác CDN

có góc DAN = góc DCN (cm câu a)

     DA = DC (Cmt)

   góc ADN = góc CDN (cmt)

=> t/giác ADN = t/giác CDN (g.c.g)

=> AN = CN (hai cạnh tương ứng) => N là trung điểm của AC

=> góc DNA = góc DNC (hai góc tương ứng)

Mà góc DNA + góc DNC = 1800 (kề bù)

=> 2 ^DNA = 1800

=> ^DNA = 180: 2

=> góc DNA = 900

c) Ta có: góc ADC là góc ngoài của t/giác ADB

=> góc ADC = góc DAB + góc B = 900 + 300 = 1200

Xét t/giác ADC có góc ADC + góc DCA + góc CAD = 1800 (tổng 3 góc của 1 t/giác)

=> 2.^ DCA = 1800 - góc ADC = 1800 - 1200 = 600

=> góc DCA = 600 : 2 = 300

=> góc DCA = góc B = 300

=> t/giác BAC là t/giác cân tại A

a: Xét ΔABC vuông tại A và ΔDMC vuông tại D có

góc C chung

=>ΔABC đồng dạng với ΔDMC

=>AB/DM=BC/MC=AC/DC

=>6/DM=10/MC=8/3

=>DM=6:8/3=2,25cm và MC=10:8/3=10*3/8=30/8=3,75cm

b: Xét ΔABC vuông tại A và ΔMBE vuông tại M có

góc B chung

=>ΔABC đồng dạng với ΔMBE

=>BA/BM=BC/BE

=>BA*BE=BM*BC

6 tháng 3 2023

Thiếu c